Journal of Inherited Metabolic Disease

, Volume 41, Issue 4, pp 585–596 | Cite as

The role of suboptimal mitochondrial function in vulnerability to post-traumatic stress disorder

  • Graeme Preston
  • Faisal Kirdar
  • Tamas Kozicz


Post-traumatic stress disorder remains the most significant psychiatric condition associated with exposure to a traumatic event, though rates of traumatic event exposure far outstrip incidence of PTSD. Mitochondrial dysfunction and suboptimal mitochondrial function have been increasingly implicated in several psychopathologies, and recent genetic studies have similarly suggested a pathogenic role of mitochondria in PTSD. Mitochondria play a central role in several physiologic processes underlying PTSD symptomatology, including abnormal fear learning, brain network activation, synaptic plasticity, steroidogenesis, and inflammation. Here we outline several potential mechanisms by which inherited (genetic) or acquired (environmental) mitochondrial dysfunction or suboptimal mitochondrial function, may contribute to PTSD symptomatology and increase susceptibility to PTSD. The proposed pathogenic role of mitochondria in the pathophysiology of PTSD has important implications for prevention and therapy, as antidepressants commonly prescribed for patients with PTSD have been shown to inhibit mitochondrial function, while alternative therapies shown to improve mitochondrial function may prove more efficacious.



No funding was provided for this work.

Compliance with ethical standards

Conflict of interest


No IACUC approval was required for this work.


  1. Accardi MV, Daniels BA, Brown PMGE, Fritschy J-M, Tyagarajan SK, Bowie D (2014) Mitochondrial reactive oxygen species regulate the strength of inhibitory GABA-mediated synaptic transmission. Nat Commun 5:3168PubMedPubMedCentralCrossRefGoogle Scholar
  2. Almeida OFX, Conde GI, Crochemore C, Demeneix BA, Fischer D, Hassan AHS, Meyer M, Holsboer F, Michaelidis TM (2017) Subtle shifts in the ratio between pro- and antiapoptotic molecules after activation of corticosteroid receptros decide neuronal fate. FASEB J 14(5):779–790CrossRefGoogle Scholar
  3. Artuch R, Pavia C, Playan A (1998) Multiple endocrine involvement in two pediatric patients with Kearns-Sayre syndrome. Horm Res 50(2):99–104PubMedGoogle Scholar
  4. Aupperle RL, Melrose AJ, Stein MB, Paulus MP (2012) Executive function and PTSD: disengaging from trauma. Neuropharmacology 62(2):686–694PubMedCrossRefGoogle Scholar
  5. Baker DG, West SA, Nicholson WE, Ekhator NN, Kasckow JW, Hill KK, Bruce AB, Orth DN (1999) Geracioti TD Jr. serial CSF corticotropin-releasing hormone levels and adrenocortical activity in combat veterans with posttraumatic stress disorder. Am J Psychiatry 156(4):585–588PubMedGoogle Scholar
  6. Baxter KK, Uittenbogaard M, Yoon J, Chiaramello A (2009) The neurogenic basic helix–loop–helix transcription factor neuroD6 concomitantly increases mitochondrial mass and regulates cytoskeletal organization in the early stages of neuronal differentiation. ASN NEURO 1(4):art:e00016. CrossRefGoogle Scholar
  7. Benjet C, Bromet E, Karam EG et al (2016) The epidemiology of traumatic event exposure worldwide: results from the World Mental health survey consortium. Psychol Med 46(2):327–343PubMedCrossRefGoogle Scholar
  8. Bersani FS, Morley C, Lindqvist D, Epel ES, Picard M, Yehuda R, Flory J, Bierer LM, Makotkine I, Abu-Amara D, Coy M, Reus VI, Lin J, Blackburn E, Marmar C, Wolkowitz OM, Mellon SH (2015) Mitochondrial DNA copy number is reduced in male combat veterans with PTSD. Progress Neuro-Psychoparmacol Biol Psychiatry 64:10–17CrossRefGoogle Scholar
  9. Bezprozvanny I, Mattson MP (2008) Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci 31(9):454–463. PubMedPubMedCentralCrossRefGoogle Scholar
  10. Boles RG, Roe T, Senadheera D (1998) Mitochondrial DNA deletion with Kearns Sayre syndrome in a child with Addison disease. Eur J Pediatr 157(8):643–647PubMedCrossRefGoogle Scholar
  11. Voccoli V, Colombaioni L (2009) Mitochondrial remodeling in differentiating neuroblasts. Brain Res 1252:15–29PubMedCrossRefGoogle Scholar
  12. Brady K, Pearlstein T, Asnis GM et al (2000) Efficacy and safety of sertraline treatment of posttraumatic stress disorder: a randomized controlled trial. JAMA 283:1837–1844PubMedCrossRefGoogle Scholar
  13. Bremner JD, Krystal JH, Southwick SM, Charney DS (1995) Functional neuroanatomical correlates of the effects of stress on memory. J Trauma Stress 8:527–553PubMedCrossRefGoogle Scholar
  14. Broekman BFP, Olff M, Boer F (2007) The genetic background to PTSD. Neurosci Behav Rev 31:348–362CrossRefGoogle Scholar
  15. Brown GC (2003) NO says yes to mitochondria. Science 299(5608):838–839PubMedCrossRefGoogle Scholar
  16. Bruno C, Minetti C, Tang Y (1998) Primary adrenal insufficiency in a child with a mitochondrial DNA deletion. J Inherit Metab Dis 21(2):155–161PubMedCrossRefGoogle Scholar
  17. Burkhalter J, Fiumelli H, Allaman I, Chatton JY, Martin JL (2003) Brain-derived neurotrophic factor stimulates energy metabolism in developing cortical neurons. J Neurosci 23(23):8212–8220PubMedCrossRefGoogle Scholar
  18. Butler MP, O’Connor JJ, Moynagh PN (2004) Dissection of tumor-necrosis factor-alpha inhibition of long-term potentiation (LTP) reveals a p38 mitogen-activated protein kinase-dependent mechanism which maps to early-but not late-phase LTP. Neurosci 124:319–326CrossRefGoogle Scholar
  19. Calabresi P, Gubellini P, Picconi B, Centonze D, Pisani A, Bonsi P, Greengard P, Hipskind RA, Borrelli E, Bernardi G (2001) Inhibition of mitochondrial complex II induces a long-term potentiation of NMDA-mediated synaptic excitation in the striatum requiring endogenous dopamine. J Neurosci 21:5110–5120PubMedCrossRefGoogle Scholar
  20. Chada SR, Hollenbeck PJ (2004) Nerve growth factor signaling regulates motility and docking of axonal mitochondria. Curr Biol 14:1272–1276PubMedCrossRefGoogle Scholar
  21. Chan SL, Liu D, Kyriazis GA, Bagsiyao P, Ouyang X, Mattson MP (2006) Mitochondrial uncoupling protein-4 regulates calcium homeostasis and sensitivity to store depletion-induced apoptosis in neural cells. J Biol Chem 281:37391–37403PubMedCrossRefGoogle Scholar
  22. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59(3):527–605PubMedCrossRefGoogle Scholar
  23. Charney DS (2004) Psychobiological mechanisms of resilience and vulnerability: implications for successful adaptation to extreme stress. Am J Psychiatry 161(2):195–216PubMedCrossRefGoogle Scholar
  24. Chen GQ, Zhu J, Shi XG, Ni JH, Zhong HJ, Si GY, Jin XL, Tang W, Li XS, Xong SM, Shen XZ, Sun GL, Ma J, Zhang P, Zhang TD, Gazin C, Naoe T, Chen SJ, Wang ZY, Chen Z (1996) In vitro studies on cellular and moleular mechanisms of arsenic trioxid (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML proteins. Blood 88(3):1052–1061PubMedGoogle Scholar
  25. Cheng A, Hou Y, Mattson MP (2010) Mitochondria and neuroplasticity. ASN NEURO 2(5):e00045. PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chihara T, Luginbuhl D, Luo L (2007) Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization. Nat Neurosci 10:828–837PubMedCrossRefGoogle Scholar
  27. Chow J, Rahman J, Achermann JC, Dattani MT, Rahman S (2017) Mitochondrial disease and endocrine dysfunction. Nat Rev Endocrinol 13:92–104PubMedCrossRefGoogle Scholar
  28. Cowell RM, Blake KR, Russell JW (2007) Localization of the transcriptional coactivator PGC-1alpha to GABAergic neurons during maturation of the rat brain. J Comp Neurol 502:1–18PubMedCrossRefGoogle Scholar
  29. Craske MG, Stein MB, Elay TC, Milad MR, Holmes A, Rapee RM, Wittchen HU (2017) Anxiety disorders. Nat Rev Disease Primers 3:17100PubMedCrossRefGoogle Scholar
  30. Cui H, Kong Y, Zhang H (2012) Oxidative stress, mitochondrial dysfunction, and aging. J Signal Transduct 2012:646354PubMedCrossRefGoogle Scholar
  31. Curti C, Mingatto FE, Plizello AC, Galastri LO, Uyemura SA, Santos AC (1999) Fluoxetine interacts with the lipid bilayer of the inner membrane of isolated rat brain mitochondria, inhibiting electron transport and F1F0-ATPase activity. Mol Cell Biochem 199(1–2):103–109PubMedCrossRefGoogle Scholar
  32. Datson NA, van der Perk J, de Kloet ER, Vreugdenhil E (2001) Identification of corticosteroid-responsive genes in rat hippocampus using serial analysis of gene expression. Eur J Neurosci 14:675–689PubMedCrossRefGoogle Scholar
  33. de Kloet ER, Joels M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6(6):463–475PubMedCrossRefGoogle Scholar
  34. Dedov VN, Armati PJ, Roufogalis BD (2000) Three-dimensional organisation of mitochondrial clusters in regenerating dorsal root ganglion (DRG) neurons from neonatal rats: evidence for mobile mitochondrial pools. J Peripher Nerv Syst 5(1):3–10PubMedCrossRefGoogle Scholar
  35. Diamond DM, Bennett MC, Fleshner M, Rose GM (1992) Inverted-U relationship between the level of peripheral corticosterone and the magnitude of hippocampal primed burst potentiation. Hippocampus 2:421–430PubMedCrossRefGoogle Scholar
  36. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctot KLA (2010) Meta-analysis of cytokines in major depression. Biol Psychiatry 67(5):446–457PubMedCrossRefGoogle Scholar
  37. Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102(1):33–42PubMedCrossRefGoogle Scholar
  38. Duchen MR (2000) Mitochondria and Ca2+ in cell physiology and pathophysiology. Cell Calcium 28:339–348PubMedCrossRefGoogle Scholar
  39. Dugan LL, Sensi SL, Canzoniero LM, Handran SD, Rothman SM, Lin TS, Goldberg MP, Choi DW (1995) Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J Neurosci 15(10):6377–6388PubMedCrossRefGoogle Scholar
  40. Dunn AJ, Swiergiel AH, de Beaurepaire R (2005) Cytokines as mediators of dperession: what can we learn from animal studies? Neurosci Biobehav Rev 29(4–5):891–909PubMedCrossRefGoogle Scholar
  41. Durroux T, Gallo-Payet N, Payet M (1991) Effects of adrenocorticotropin on action potential and calcium currents in cultured rat and bovine glomerulosa cells. Endocrinology 129:2139–2147PubMedCrossRefGoogle Scholar
  42. Eluamai A, Brooks K (2013) Effect of aerobic exercise on mitochondrial DNA and aging. J Exerc Sci Fit 11(1):1–5.Google Scholar
  43. Fanselow MS, LeDoux JE (1999) Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron 23:229–232PubMedCrossRefGoogle Scholar
  44. Feleder C, Tseng KY, Calhoon GG, O'Donnell P (2010) Neonatal intra-hippocampal immune challenge alters dopamine modulation of prefrontal cortical interneurons in adult rats. Biol Psychiatry 67(4):386–392PubMedCrossRefGoogle Scholar
  45. Flaquer A, Baumbach C, Ladwig K-H et al (2015) Mitochondrial genetic variants identified to be associated with posttraumatic stress disorder. Transl Psychiatry 5(3):e524. PubMedPubMedCentralCrossRefGoogle Scholar
  46. Flory JD, Yehuda R (2015) Comorbidity between post-traumatic stress disorder and major depressive disorder: alternative explanations and treatment considerations. Dialogues Clin Neurosci 17(2):141–150PubMedPubMedCentralGoogle Scholar
  47. Francati V, Vermetten E, Bremner JD (2007) Functional neuroimaging studies in posttraumatic stress disorder: review of current methods and findings. Depression and anxiety. 24(3):202–218. PubMedPubMedCentralCrossRefGoogle Scholar
  48. Friedman JR, Nunnari J (2014) Mitochondrial form and function. Nature 505(7483):335–343PubMedPubMedCentralCrossRefGoogle Scholar
  49. Frodl T, Amico F (2014) Is there an association between peripheral immune markers and structural/functional neuroimaging findings? Prog Neuropsychoparmacol Biol Psychiatry 48:295–303CrossRefGoogle Scholar
  50. Gould E, Woolley CS, McEwen BS (1990) Short-term glucocorticoid manipulations affect neuronal morphology and survival in the adult rat dentate gyrus. Neuroscience 37:367–375PubMedCrossRefGoogle Scholar
  51. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281(5381):1309–1312PubMedCrossRefGoogle Scholar
  52. Guidarelli A, Cerioni L, Cantoni O (2007) Inhibition of complex III promotes loss of Ca2+ dependence for mitochondrial superoxide formation and permeability transition evoked by peroxynitrite. J Cell Sci 120(Pt 11):1908–1914Google Scholar
  53. Gulyas AI, Buzsaki G, Freund TF, Hirase H (2006) Populations of hippocampal inhibitory neurons express different levesl of cytochrome c. Eur J Nerosci 23:2581–2594CrossRefGoogle Scholar
  54. Gunasekar PG, Kanthasamy AG, Borowitz JL, Isom GE (1995) NMDA receptor activation produces a concurrent generation of nitric oxide and reactive oxygen species: implication for cell death. J Neurochem 65:2016–2021PubMedCrossRefGoogle Scholar
  55. Hakem R, Hakem A, Duncan GS, Henderson JT, Woo M, Soengas MS, Elia A, de la Pompa JL, Kagi D, Khoo W, Potter J, Yoshida R, Kaufman SA, Lowe SW, Penninger JM, Mak TW (1998) Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94(3):339–352PubMedCrossRefGoogle Scholar
  56. Harris JJ, Jolivet R, Attwell D (2012) Synaptic energy use and supply. Neuron 75:762–777PubMedCrossRefGoogle Scholar
  57. Hayes JP, VanElzakker MB, Shin LM (2012) Emotion and cognition interactions in PTSD: a review of neurocognitive and neuroimaging studies. Front Integr Neurosci 6:89PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hendler T, Rotshtein P, Yeshurun Y, Weizmann T, Kahn I, Ben-Bashat D, Malach R, Bleich A (2003) Sensing the inveisible: differential sensitivity of visual cortex and amygdala to traumatic context. NeuroImage 19:587–600PubMedCrossRefGoogle Scholar
  59. Hroudova J, Fisar Z (2010) Activities of respiratory chain complexes and citrate synthase influenced by pharmacologically different antidepressants and mood stabilizers. Neuro Endocrinol Lett 31(3):336–342PubMedGoogle Scholar
  60. Hu Z, Yuri K, Ozawa H, Lu H, Kawata M (1997) The in vivo time course for elimination of adrenalectomy-induced apoptotic profiles from the granule cell layer fo the rat hippocampus. J Neurosci 17(11):3981–3989PubMedCrossRefGoogle Scholar
  61. Huang YY, Kandel ER (1998) Postsynaptic induction and PKA-dependent expression of LTP in the lateral amygdala. Neuron 21(1):169–178PubMedCrossRefGoogle Scholar
  62. Inohara N, Gourley TS, Carrio R, Muniz M, Merino J, Garcia I, Koseki T, Hu Y, Chen S, Diva NG (1998) A Bcl-2 homologue that binds directly to Apaf-1 and induces BH3-independent cell death. J Biol Chem 273:32479–32486PubMedCrossRefGoogle Scholar
  63. Jou SH, Chiu NY, Liu CS (2009) Mitochondrial dysfunction and psychiatric disorders. Chang Gung Med J 32(4):370–379PubMedGoogle Scholar
  64. Juo P, Kuo CJ, Yuan J, Blenis J (1998) Essential requirement for caspase-8/FLICE in the initiation of the Fas-induced apoptotic cascade. Curr Biol 8(18):1001–1008PubMedCrossRefGoogle Scholar
  65. Kageyama GH, Won-Riley MTT (1982) Histochemical localization of cytochrome oxidase in the hippocampus: correlation with specific neuronal types and afferent pathways. Neuroscience 7:2337–2361PubMedCrossRefGoogle Scholar
  66. Kann O, Kovacs R (2007) Mitochondria and neuronal activity. Am J Physiol Cell Physiol 292:C641–C657PubMedCrossRefGoogle Scholar
  67. Kann O, Huchzermeyer C, Kovacs R, Wirtz S, Schuelke M (2011) Gamma oscillations in the hippocampus require high complex I gene expression and strong functional performance of mitochondria. Brain 134:345–358PubMedCrossRefGoogle Scholar
  68. Kann O, Papageorgiou IE, Draguhn A (2014) Highly energized inhibitory interneurons are a central element for information processin gin cortical networks. J Cereb Blood Flow Metab 34:1270–1282PubMedPubMedCentralCrossRefGoogle Scholar
  69. Karam EG, Friedman MJ, Hill ED et al (2014) Cumulative traumas and risk thresholds: 12-month PTSD in the WORLD MENTAL health (WMH) SURVEYS. Depression and anxiety 31(2):130–142. PubMedCrossRefGoogle Scholar
  70. Kepp O, Galluzzi L, Martins I, Schlemmer F, Adjemian S, Michaud M, Sukkurwala AQ, Menger L, Zitvogel L, Kroemer G (2011) Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy. Cancer Metastasis Rev 30(1):61–69PubMedCrossRefGoogle Scholar
  71. Kessler RC, Rose S, Koenen KC et al (2014) How well can post-traumatic stress disorder be predicted from pre-trauma risk factors? An exploratory study in the WHO World Mental health Surveys. World Psychiatry 13(3):265–274PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kim JJ, Diamond DM (2002) The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci 3:453–462PubMedCrossRefGoogle Scholar
  73. Klinedinst NJ, Regenold WTA (2015) Mitochondrial bioenergetic basis of depression. J Bioenerg Biomembr 47(1–2):155–171PubMedCrossRefGoogle Scholar
  74. Kojima I, Kojima K, Rasmussen II (1985) Characteristics of angiotensin II, K+, and ACTH-induced calcium influx in adrenal glomerulosa cells. J Biol Chem 260:9171–9176PubMedGoogle Scholar
  75. Krajewski S, Krajewska M, Ellerby LM, Welsh K, Xie Z, Deveraux QL, Salvesen GS, Bredesen DE, Rosenthal RE, Fiskum G (1999) Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc Natl Acad Sci U S A 96:5752–5757PubMedPubMedCentralCrossRefGoogle Scholar
  76. Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519PubMedCrossRefGoogle Scholar
  77. Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H, Su MS, Rakic P, Flavell RA (1998) Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94(3):325–337PubMedCrossRefGoogle Scholar
  78. Lanza IR, Zabielski P, Klaus KA et al (2012) Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis. Cell Metab 16(6):777–788. PubMedPubMedCentralCrossRefGoogle Scholar
  79. LeDoux JE (1993) Emotional memory systems in the brain. Behav Brain Res 58(1–2):69–79PubMedCrossRefGoogle Scholar
  80. Levkovitz Y, Gil-Ad I, Zeldich E, Dayag M, Weizman A (2005) Differential induction of apoptosis by antidepressants in glioma and neuroblastoma cell lines. J Mol Neurosci 27:29–42PubMedCrossRefGoogle Scholar
  81. Li Z, Okamoto K, Hayashi Y, Sheng M (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119:873–887PubMedCrossRefGoogle Scholar
  82. Li Z, Jo J, Jia JM, Lo SC, Whitcomb DJ, Jiao S, Cho K, Sheng M (2010) Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell 141:859–871PubMedPubMedCentralCrossRefGoogle Scholar
  83. Li P, Zhao Y, Wu X et al (2012) Interferon gamma (IFN-γ) disrupts energy expenditure and metabolic homeostasis by suppressing SIRT1 transcription. Nucleic Acids Res 40(4):1609–1620. PubMedCrossRefGoogle Scholar
  84. Li H, Li X, Smerin SE et al (2014) Mitochondrial gene expression profiles and metabolic pathways in the amygdala associated with exaggerated fear in an animal model of PTSD. Front Neurol 5:164. PubMedPubMedCentralCrossRefGoogle Scholar
  85. Liberzon I, Abelson JL (2016) Context processing and the neurobiology of post-traumatic stress disorder. Neuron 92(1):14–30PubMedPubMedCentralCrossRefGoogle Scholar
  86. Liberzon I, Taylor SF, Amdur R, Jung TD, Chamberlain KR, Minoshima S, Koeppe RA, Fig LM (1999) Brain activation in PTSD in response to trauma-related stimuli. Biol Psychiatry 45:817–826PubMedCrossRefGoogle Scholar
  87. Liu D, Chan SL, de Souza-Pinto NC, Slevin JR, Wersto RP, Zhan M, Mustafa K, de Cabo R, Mattson MP (2006) Mitochondrial UCP4 mediates an adaptive shift in energy metabolism and increases the resistance of neurons to metabolic and oxidative stress. NeuroMolecular Med 8:389–414PubMedCrossRefGoogle Scholar
  88. Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, Mootha VK, Jager S, Vianna CR, Reznick RM (2004) Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119:121–135PubMedCrossRefGoogle Scholar
  89. Lopez-Armada MJ, Riveiro-Naveira RR, Vaamonde-Garcia C, Valcarcel-Ares MN (2013) Mitochondrial dysfunction and the inflammatory response. Mitochondrion 13(2):106–118PubMedCrossRefGoogle Scholar
  90. Lopez-Lluch G, Hunt N, Jones B, Zhu M, Jamieson H, Hilmer S, Cascajo MV, Allard J, Ingram DK, Navas P, de Cabo R (2006) Calorie restriction induces mitochondrial biogenesis and bioenergectic efficiency. Proc Natl Acad Sci U S A 103(6):1768–1773PubMedPubMedCentralCrossRefGoogle Scholar
  91. Lu B, Wang KH, Nose A (2009) Molecular mechanisms underlying neural circuit formation. Curr Opin Neurobiol 19:162–167PubMedPubMedCentralCrossRefGoogle Scholar
  92. Lüscher C, Malenka RC (2012) NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect Biol 4(6):a005710. PubMedPubMedCentralCrossRefGoogle Scholar
  93. Maalouf MA, Rho JM, Mattson MP (2009) The neuroprotective properties of calorei restriction, the ketogenic diet, and ketone bodies. Brain Res Rev 59(2):293–315PubMedCrossRefGoogle Scholar
  94. MacGibbon GA, Lawlor PA, Sirimanne ES, Walton MR, Connor B, Young D, Williams C, Gluckman P, Faull RL, Hughes P, Dragunow M (1997) Bax expression in mammalian neurons undergoing apoptosis, and in Alzheimer's disease hippocampus. Brain Res 750(1–2):223–234PubMedCrossRefGoogle Scholar
  95. Mancini M, Nicholson DW, Roy S, Thornberry NA, Peterson EP, Casciola-Rosen LA, Rosen A (1998) The caspase-3 precursor has a cytosolic and mitochondrial distribution: implications for apoptotic signaling. J Cell Biol 140:1485–1495PubMedPubMedCentralCrossRefGoogle Scholar
  96. Marchi S, Giorgi C, Suski JM, Agnoletto C, Bononi A, Bonora M, De Marchi E, Missiroli S, Patergnani S, Poletti F, Rimessi A, Duszynski J, Wiechowski MR, Pinton P (2012) Mitochondria-Ros crosstalk in the control of cell death and aging. J Signal Transduct. 2012:329635PubMedCrossRefGoogle Scholar
  97. Markham A, Cameron I, Franklin P, Spedding MBDNF (2004) Increases rat brain mitochondrial respiratory coupling at complex I, but not complex II. Eur J Neurosci 20(5):1189–1196PubMedCrossRefGoogle Scholar
  98. Marshall RD, Beebe KL, Oldham M et al (2001) Efficacy and safety of paroxetine treatment for chronic PTSD: a fixed-dose, placebo-controlled study. Am J Psychiatry 158:1982–1988PubMedCrossRefGoogle Scholar
  99. Martin J-L, Finsterwald C (2011) Cooperation between BDNF and glutamate in the regulation of synaptic transmission and neuronal development. Commun Integrat Biol 4(1):14–16. CrossRefGoogle Scholar
  100. Mathew A, Lindsley TA, Sheridan A, Bhoiwala DL, Hushmendy SF, Yager EJ, Ruggiero EA, Crawford DR (2012) Degraded mitochondrial DNA Isa a newly identified subtype of the damage associated molecular pattern (DAMP) family and possible trigger of neurodegeneration. J Alzheimers Dis 30(3):617–627PubMedCrossRefGoogle Scholar
  101. Mattson MP, Liu D (2003) Mitochondrial potassium channels and uncoupling proteins in synaptic plasticity and neuronal cell death. Biochem Biophys Res Commun 304:539–549. PubMedCrossRefGoogle Scholar
  102. Mattson MP, Partin J (1999) Evidence for mitochondrial control of neuronal polarity. J Neurosci Res 56:8–20PubMedCrossRefGoogle Scholar
  103. McEwen BS, Wingfield JC (2003) The concept of allostasis in biology and biomedicine. Horm Behav 43(1):2–15PubMedCrossRefGoogle Scholar
  104. Menshikova EV, Ritov VB, Fairfull L, Ferrell RE, Kelley DE, Goodpaster BH (2006) Effects of exercise on mitochondrial content and function in aging human skeletal muscle. J Gerontol A Biol Sci Med Sci 61(6):534–540PubMedPubMedCentralCrossRefGoogle Scholar
  105. Michopoulos V, Rothbaum AO, Jovanovic T et al (2015) CRP genetic variation and CRP levels are associated with increased PTSD symptoms and physiological responses in a highly traumatized civilian population. Am J Psychiatry 172(4):353–362. PubMedCrossRefGoogle Scholar
  106. Middleton G, Nunez G, Davies AM (1996) Bax promotes neuronal survival and antagonises the survival effects of neurotrophic factors. Development 122(2):695–701PubMedGoogle Scholar
  107. Milgram NW, Siwak-Tapp CT, Araujo J, Head E (2006) Neuroprotective effects of cognitive enrichment. Agein Res Rev 5(3):354–369CrossRefGoogle Scholar
  108. Miller WL (2013) Steroid hormone synthesis in mitochondria. Mol Cell Endocrinol 379(1–2):62–73PubMedCrossRefGoogle Scholar
  109. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(Pt 1):1–13PubMedCrossRefGoogle Scholar
  110. Myers KM, Davis M (2007) Mechanisms of fear extinction. Mol Psychiatry 12(2):120–150PubMedCrossRefGoogle Scholar
  111. Nair SM, Karst H, Dumas T, Phillips R, Sapolsky RM, Rumpff-van Essen L, Maslam S, Lucassen PJ, Joels M (2004) Gene expression profiles associated with survival of individual rat dentat cells after endogenous corticosteroid deprivation. Eur J Neurosci 20(12):3233–3243PubMedCrossRefGoogle Scholar
  112. Nakahira K, Haspel JA, Rathinam VA et al (2011) Autophagy proteins regulate innate immune response by inhibiting NALP3 inflammasome-mediated mitochondrial DNA release. Nat Immunol 12(3):222–230. PubMedCrossRefGoogle Scholar
  113. Nicholls DG, Budd SL (2000) Mitochondria and neuronal survival. Physiol Rev 80:315–360PubMedCrossRefGoogle Scholar
  114. Nicolino M, Ferlin T, Forest M (1997) Identification of a large-scale mitochondrial deoxyribonucleic acid deletion in endocrinopathies and deafness: report of two unrelated cases with diabetes mellitus and adrenal insufficiency, respectively. J Clin Endocrinol Metab 82(9):3063–3067PubMedGoogle Scholar
  115. North K, Korson MS, Krawiecki N (1996) Oxidative phosphorylation defect associated with primary adrenal insufficiency. J Pediatr 128(5 Pt 1):688–692PubMedCrossRefGoogle Scholar
  116. Nutt DH, Malizia AL (2004) Structural and functional brain changes in postraumatic stress diosrder. J Clin Psychiatry 65(Suppl 1):11–17PubMedGoogle Scholar
  117. Olff M, Polak AR, Witteveen AB, Denys D (2014) Executive function in posttaumatic stress disorder (PTSD) and the influence of comorbid depression. Neurobiol Learn Mem 112:114–121PubMedCrossRefGoogle Scholar
  118. Overly CC, Rieff HI, Hollenbeck PJ (1996) Organelle motility and metabolism in axons vs dendrites of cultured hippocampal neurons. J Cell Sci 109:971–980PubMedGoogle Scholar
  119. Ozer EJ, Best SR, Lipsey TL, Weiss DS (2003) Predictors of posttraumatic stress disorder and symptoms in adults: a meta-analysis. Psychol Bull 129(1):52–73PubMedCrossRefGoogle Scholar
  120. Parr RL, Martin LH (2012) Mitochondrial and nuclear genomics and the emergence of personalized medicine. Human Genomics 6(1):3. PubMedPubMedCentralCrossRefGoogle Scholar
  121. Pavlides C, Watanabe Y, McEwen BS (1993) Effects of glucocorticoids on hippocampal long-term potentiation. Hippocampus 3:183–19210PubMedCrossRefGoogle Scholar
  122. Peng TI, Jou MJ, Sheu SS, Greenamyre JT (1998) Visualization of NMDA receptor-induced mitochondrial calcium accumluation in striatal neurons. Exp Neurol 149(1):1–12PubMedCrossRefGoogle Scholar
  123. Pervanidou P, Kolaitis G, Charitaki S, Lazaropoulou C, Papassotiriou I, Hindmarsh P, Bakoula C, Tsiantis J, Chrousos GP (2007) The natural history of neuroendocrine changes in pediatric posttraumatic stress disorder (PTSD) after motor vehicle accidents: progressive divergence of noradrenaline and cortisol concentrations over time. Biol Psychiatry 62(10):1095–1102.
  124. Picard M, Juster RP, McEwen BS (2014) Mitochondrial allostatic load puts the "gluc" back in glucocorticoids. Nat Rev Endocrinol 10:303–310PubMedCrossRefGoogle Scholar
  125. Pissiota A, Frans O, Fernandez M, von Knorring L, Fisher H, Fredrikson M (2002) Neurofunctional correlates of posttraumatic stress disorder; a PET symptom provocation study. Eur Arch Psychiatry Clin Neurosci 252:68–75PubMedCrossRefGoogle Scholar
  126. Polak AR, Witteveen AB, Reitsma JB, Olff M (2012) The role of executive funciton in posttraumatic stress disorder: a systematic review. J Affect Disord 141(1):11–21PubMedCrossRefGoogle Scholar
  127. Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J (2010) The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 28:721–733PubMedCrossRefGoogle Scholar
  128. Quirk GJ, Mueller D (2007) Neural mechanisms of extinction learning and retreival. Neuropsychopharmacology 33(1):56–72PubMedPubMedCentralCrossRefGoogle Scholar
  129. Rajasekaran A, Venkatasubramanian G, Berk M, Debnath M (2015) Mitochondrial dysfunction in schizophrenia: pathways, mechanisms and implications. Neurosci Biobehav Rev 48:10–21PubMedCrossRefGoogle Scholar
  130. Reed JC (1997) Bcl-2 family proteins: regulators of apoptosis and chemoresistance in hematologic malignancies. Semin Hematol 34(4 Suppl 5):9–19PubMedGoogle Scholar
  131. Reynolds IJ, Hastings TG (1995) Glutamate induces the production of reactive oxygen species in culture forebrain nerons following nmda receptor activation. J Neurosci 15(5 Pt 1):3318–3327PubMedCrossRefGoogle Scholar
  132. Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13:566–578PubMedCrossRefGoogle Scholar
  133. Roberts AL, Gilman SE, Breslau J, Breslau N, Koenen KC (2011) Race/ethnic differences in exposure to traumatic events, development of post-traumatic stress disorder, and treatment-seeking for post-traumatic stress disorder in the United States. Psychol Med 41:71–83PubMedCrossRefGoogle Scholar
  134. Rubin DC, Feeling N (2013) Measuring the severity of negative and traumatic events. Clin Psychol Sci 1(4):375–389PubMedPubMedCentralCrossRefGoogle Scholar
  135. Ruthel G, Hollenbeck PJ (2003) Response of mitochondrial traffic to axon determination and differential branch growth. J Neurosci 23:8618–8624PubMedCrossRefGoogle Scholar
  136. Shalev A, Liverzon I, Marmar C (2017) Post-traumatic stress disorder. N Engl J Med 376:2459–2469PubMedCrossRefGoogle Scholar
  137. Shin LM, Kozzlyn SM, McNally RJ, Alpert NM, Thmopson WL, Rauch SL, Macklin ML, Pitman RK (1997) Visual imagery and perception in posttraumatic stress disorder a positron emission tomographic investigation. Arch Gen Psychiatry 54:233–241PubMedCrossRefGoogle Scholar
  138. Shin LM, Orr SP, Carson MA, Rauch SL, Macklin ML, Lasko NB, Peters PM, Metzger LJ, Dougherty DD, Cannistraro PA, Alpert M, Fischman AJ, Pitman RK (2004) Regional cerebral blood flow in the amygdala and medial prefrontal cortex during traumatic imagery in male and female Vietnam beterans with PTSD. Arch Gen Psychiatry 61:168–176PubMedCrossRefGoogle Scholar
  139. Shokolenko I, Venediktova N, Bochkareva A, Wilson BL, Alexeyev MF (2009) Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Res 37(8):2539–2548PubMedPubMedCentralCrossRefGoogle Scholar
  140. Shuttleworth CW, Brennan AM, Connor JA (2003) NAD(P)H fluorescence imaging of postsynaptic neuronal activation in murine hippocampal slices. J Neurosci 23:3196–3208PubMedCrossRefGoogle Scholar
  141. Simpson ER, Waterman MR (1988) Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by ACTH. Annu Rev Physiol 50:427–424Google Scholar
  142. Sloviter RS, Valiquette G, Abrams GM, Ronk EC, Sollas AI, Paul LA, Neubort SL (1989) Selective loss of hippocampal granule cells in the mature rat brain after adrenalectomy. Science 243:535–538PubMedCrossRefGoogle Scholar
  143. Smith SM, Vale WW (2006) The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin Neurosci 8(4):383–395PubMedPubMedCentralGoogle Scholar
  144. Smorodchenko A, Rupprecht A, Sarilova I, Ninnemann O, Bräuer AU, Franke K, Schumacher S, Techritz S, Nitsch R, Schuelke M, Pohl EE (2009) Comparative analysis of uncoupling protein 4 distribution in various tissues under physiological conditions and during development. Biochim Biophys Acta 1788:2309–2319PubMedCrossRefGoogle Scholar
  145. Song Q, Kuang Y, Dixit VM, Vincenz C (1999) Boo, a novel negative regulator of cell death, interacts with Apaf-1. EMBO J 18:167–178Google Scholar
  146. Souza MEJ, Polizello ACM, Uyemur SA, Curti C (1994) Effect of fluoxetine on rat liver mitochondria. Biochem Pharmacol 48(3):535–541PubMedCrossRefGoogle Scholar
  147. Spoont MR, Williams JW, Kehle-Forbes S, Nieuwsma JA, Mann-Wrobel MC, Gross R (2015) Does this patient have posttraumatic stress disorder? Rational clinical examination systematic review. JAMA 314(5):501–510. PubMedCrossRefGoogle Scholar
  148. Stress MEBS (1998) Adaptation, and disease: Allostasis and allostatic load. Ann N Y Acad Sci 840:33–44CrossRefGoogle Scholar
  149. Strohle A (2009) Physical activity, exercise, depression and anxiety disorders. J Neural Transm 116:777–784PubMedCrossRefGoogle Scholar
  150. Strowig T, Henao-Mejia J, Elinav E, Flavell R (2012) Inflammasomes in health and disease. Nature 481(7381):278–286PubMedCrossRefGoogle Scholar
  151. Su YA, Wu J, Zhang L et al (2008) Dysregulated mitochondrial genes and networks with drug targets in postmortem brain of patients with posttraumatic stress disorder (PTSD) revealed by human mitochondria-focused cDNA microarrays. Int J Biol Sci 4(4):223–235PubMedPubMedCentralCrossRefGoogle Scholar
  152. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Constantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397(6718):441–446PubMedCrossRefGoogle Scholar
  153. Taanman J-W (1999) The mitochondrial genome: structure, transcription, translation, replication. Biochim Biophys Acta 1410(2):103–123PubMedCrossRefGoogle Scholar
  154. Tan S, Sagara Y, Liu Y, Maher P, Schubert D (1998) The regulation of reactive oxygen species production during programmed cell death. J Cell Biol 141(6):1423PubMedPubMedCentralCrossRefGoogle Scholar
  155. Tatton WG, Olanow CW (1999) Apoptosis in neurodegenerative diseases: the role of mitochondria. Biochim Biophys Acta 1410(2):195–213PubMedCrossRefGoogle Scholar
  156. Telch MJ, Bruchey AK, Rosenfield D et al (2014) Post-session administration of USP methylene blue facilitates the retention of pathological fear extinction and contextual memory in phobic adults. Am J Psychiatry 171(10):1091–1098. PubMedPubMedCentralCrossRefGoogle Scholar
  157. Thompson Legault J, Strittmatter L, Tardif J et al (2015) A metabolic signature of mitochondrial dysfunction revealed through a monogenic form of Leigh syndrome. Cell Rep 13(5):981–989. PubMedPubMedCentralCrossRefGoogle Scholar
  158. Toescu EC (2000) Mitochondria and Ca2+ signaling. J Cell Mol Med 4:164–175PubMedCrossRefGoogle Scholar
  159. Toresson H, Grant SG (2005) Dynamic distribution of endoplasmic reticulum in hippocampal neuron dendritic spines. Eur J Neurosci 22:1793–1798PubMedCrossRefGoogle Scholar
  160. Tursich M, Neufeld RW, Frewen PA, Harricharan S, Kibler JL, Rhind SG et al (2014) Association of trauma exposure with proinflammatory activity: a transdiagnostic meta-analysis. Transl Psychiatry 4:e413. PubMedPubMedCentralCrossRefGoogle Scholar
  161. Valcarcel-Ares MN, Riveiro-Naveira RR, Vaamonde-Garcia C, Lureiro J, Hermida-Carballo L, Blanco FJ, Lopez-Armada MJ (2014) Mitochondrial dysfunction promotes and aggravates the inflammatory response in normal human synoviocytes. Rheumatology 53:1332–1343PubMedCrossRefGoogle Scholar
  162. VanElzakker MB, Dahlgren MK, Davis FC, Dubois S, Shin LM (2014) From Pavlov to PTSD: the extinction of conditioned fear in rodents, humans, and in anxiety disorders. Neurobiol Learn Mem 113:3–18PubMedCrossRefGoogle Scholar
  163. Varfolomeev EE, Schuchmann M, Luria V, Chiannilkulchai N, Beckmann JS, Mett IL, Rebrikov D, Brodianski VM, Kemper OC, Kollet O, Lapidot T, Soffer D, Sobe T, Avraham KB, Goncharov T, Holtmann H, Lonai P, Wallach D (1998) Targeted disruption of the mouse caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9(2):267–276PubMedCrossRefGoogle Scholar
  164. Verburg J, Hollenbeck PJ (2008) Mitochondrial membrane potential in axons increases with local nerve growth factor or semaphorin signaling. J Neurosci 28:8306–8315PubMedPubMedCentralCrossRefGoogle Scholar
  165. Verhagen AM, Ekert PG, Pakush M, Silke J, Connolly LM, Reid GE, Moritz RL, Simpson RJ, Vaux DL (2000) Indentification of DIABLO, a mammalian protein that promotes apoptosis by binding to an d antagonizing IAP proteins. Cell 102(1):43–53PubMedCrossRefGoogle Scholar
  166. von Kanel R, Hepp U, Kraemer B, Traber R, Keel M, Mica L, Schnyder U (2007) Evidence for low grade systemic proinflammatory activity in patients with posttraumatic stress disorder. J Psychatric Res 41(9):744–752CrossRefGoogle Scholar
  167. Wanders RJA, Ruiter JPN, IJLst L, Waterham HR, Houten SM (2010) The enzymology of mitochondrial fatty acid beta-oxidation and its application to followup analysis of positive neonatal screening results. J Inherit Metab Dis 33(5):479–494PubMedPubMedCentralCrossRefGoogle Scholar
  168. Wang L (2016) Mitochondrial purine and pyrimidine metabolism and beyond. Nucelosides Nucleotides Nucleic Acids 35(10–12):578–594CrossRefGoogle Scholar
  169. Wang C, Youle RJ (2016) The role of mitochondria in apoptosis. Annu Rev Genet 43:95–118CrossRefGoogle Scholar
  170. Wang C-U, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS Jr (1998) NF-kB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281(5383):1680–1683PubMedCrossRefGoogle Scholar
  171. Whittaker RG, Turnbull DM, Whittington MA, Cunningham MO (2011) Impaired mitochondrial function abolishes gamma oscillations in the hippocampus through an effect on fast-spiking interneurons. Brain 134:e180PubMedPubMedCentralCrossRefGoogle Scholar
  172. Williams JM, Thompson VL, Mason-Parker SE, Abraham WC, Tate WP (1998) Synaptic activity-dependent modulation of mitochondrial gene expression in the rat hippocampus. Mol Brain Res 60:50–56PubMedCrossRefGoogle Scholar
  173. Wossink J, Karst H, Mayboroda O, Morphological JM (2001) Functional properties of rat dentate granule cells after adrenalectomy. Neuroscience 108(2):263–272PubMedCrossRefGoogle Scholar
  174. Xavier JM, Rodrigues CMP, Mitochondria SS (2015) Major regulators of neural development. Neuroscientist 22(4):346–358PubMedCrossRefGoogle Scholar
  175. Xu L, Anwyl R, Rowan MJ (1997) Behavioural stress facilitates the induction of long-term depression in the hippocampus. Nature 387:497–500PubMedCrossRefGoogle Scholar
  176. Yamazaki T, Kimoto T, Higuchi K, Ohta Y, Kawato S, Kominami S (1998) Calcium ion as a second messenger for o-nitrophenylsulfenyl-adrenocorticotropin (NPS-ACTH) and ACTH in bovine adrenal steroidogenesis. Endocrinology 139(2):4765–4771PubMedCrossRefGoogle Scholar
  177. Yang P, Wu MT, Hsu CC, Ker JH (2004) Evidence of early neurobiological alternations in adolescents with posttraumatic stress disorder: a functional MRI study. Neurosci Lett 370:13–18PubMedCrossRefGoogle Scholar
  178. Yi PL, Tsai CH, Lu MK, Liu HJ, Chen YC, Chang FC (2007) Interleukin-1beta mediates sleep alteration in rats with rotenone-induced parkinsonism. Sleep 30(4):413–425PubMedCrossRefGoogle Scholar
  179. Ying SW, Futter M, Rosenblum K, Webber MJ, Hunt SP, Bliss TV, Bramham CR (2002) Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of arc synthesis. J Neurosci 22(5):1532–1540PubMedCrossRefGoogle Scholar
  180. Zhang L, Li H, Hu X et al (2015) Mitochondria-focused gene expression profile reveals common pathways and CPT1B dysregulation in both rodent stress model and human subjects with PTSD. Transl Psychiatry 5(6):e580. PubMedPubMedCentralCrossRefGoogle Scholar
  181. Zigmond MJ, Smeyne RJ (2014) Exercise: is it neuroprotective and if so, how does it work? Parkinsonism Relat Disord 20(Suppl 1):S123–S127PubMedCrossRefGoogle Scholar

Copyright information

© SSIEM 2018

Authors and Affiliations

  1. 1.Hayward Genetics CenterTulane University School of MedicineNew OrleansUSA
  2. 2.Department of Clinical GenomicsMayo ClinicRochesterUSA
  3. 3.Department of AnatomyRadboud University Medical CenterNijmegenNetherlands

Personalised recommendations