Advertisement

Journal of Inherited Metabolic Disease

, Volume 41, Issue 4, pp 719–729 | Cite as

A family segregating lethal neonatal coenzyme Q10 deficiency caused by mutations in COQ9

  • Amanda C. Smith
  • Yoko Ito
  • Afsana Ahmed
  • Jeremy A. Schwartzentruber
  • Chandree L. Beaulieu
  • Erika Aberg
  • Jacek Majewski
  • Dennis E. Bulman
  • Karina Horsting-Wethly
  • Diana Vermunt-de Koning
  • Care4Rare Canada Consortium
  • Richard J. Rodenburg
  • Kym M. Boycott
  • Lynette S. Penney
Original Article

Abstract

Primary CoQ10 deficiency is a clinically and genetically heterogeneous, autosomal recessive disorder resulting from mutations in genes involved in the synthesis of coenzyme Q10 (CoQ10). To date, mutations in nine proteins required for the biosynthesis of CoQ10 cause CoQ10 deficiency with varying clinical presentations. In 2009 the first patient with mutations in COQ9 was reported in an infant with a neonatal-onset, primary CoQ10 deficiency with multi-system disease. Here we describe four siblings with a previously undiagnosed lethal disorder characterized by oligohydramnios and intrauterine growth restriction, variable cardiomyopathy, anemia, and renal anomalies. The first and third pregnancy resulted in live born babies with abnormal tone who developed severe, treatment unresponsive lactic acidosis after birth and died hours later. Autopsy on one of the siblings demonstrated brain changes suggestive of the subacute necrotizing encephalopathy of Leigh disease. Whole-exome sequencing (WES) revealed the siblings shared compound heterozygous mutations in the COQ9 gene with both variants predicted to affect splicing. RT-PCR on RNA from patient fibroblasts revealed that the c.521 + 2 T > C variant resulted in splicing out of exons 4–5 and the c.711 + 3G > C variant spliced out exon 6, resulting in undetectable levels of COQ9 protein in patient fibroblasts. The biochemical profile of patient fibroblasts demonstrated a drastic reduction in CoQ10 levels. An additional peak on the chromatogram may represent accumulation of demethoxy coenzyme Q (DMQ), which was shown previously to accumulate as a result of a defect in COQ9. This family expands our understanding of this rare metabolic disease and highlights the prenatal onset, clinical variability, severity, and biochemical profile associated with COQ9-related CoQ10 deficiencies.

Keywords

COQ9 Primary CoQ10 deficiency Prenatal Exome sequencing Mitochondrial disease 

Notes

Acknowledgements

We thank the family for kindly agreeing to participate in this study.

Funding

This work was supported by the Care4Rare Canada Consortium (Enhanced Care for Rare Genetic Diseases in Canada) funded by Genome Canada, the Canadian Institutes of Health Research (CIHR), and the Ontario Genomics Institute (OGI-049), with additional funding from Genome Québec and Genome British Columbia.

Compliance with ethical standards

Conflict of interest

A.C. Smith, Y. Ito, A. Ahmed, J.A. Schwartzentruber, C.L. Beaulieu, E. Aberg, J. Majewski, D.E. Bulman, K. Horsting-Wethly, D. Vermunt-de Koning, Care4Rare Canada Consortium, R.J. Rodenburg, K.M. Boycott, and L.S. Penney declare that they have no conflict of interest.

References

  1. Ashraf S, Gee HY, Woerner S et al (2013) ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J Clin Invest 123:5179–5189CrossRefPubMedPubMedCentralGoogle Scholar
  2. Beaulieu CL, Majewski J, Schwartzentruber J et al (2014) FORGE Canada consortium: outcomes of a 2-year national rare-disease gene-discovery project. Am J Hum Genet 94:809–817CrossRefPubMedPubMedCentralGoogle Scholar
  3. Brea-Calvo G, Haack TB, Karall D et al (2015) COQ4 mutations cause a broad spectrum of mitochondrial disorders associated with CoQ10 deficiency. Am J Hum Genet 96:309–317CrossRefPubMedPubMedCentralGoogle Scholar
  4. Crane FL, Navas P (1997) The diversity of coenzyme Q function. Mol Asp Med 18(Suppl):S1–S6CrossRefGoogle Scholar
  5. Danhauser K, Herebian D, Haack TB et al (2015) Fatal neonatal encephalopathy and lactic acidosis caused by a homozygous loss-of-function variant in COQ9. Eur J Hum Genet 24:450–454CrossRefPubMedPubMedCentralGoogle Scholar
  6. Desbats MA, Lunardi G, Doimo M, Trevisson E, Salviati L (2015) Genetic bases and clinical manifestations of coenzyme Q10 (CoQ 10) deficiency. J Inherit Metab Dis 38:145–156CrossRefPubMedGoogle Scholar
  7. Diomedi-Camassei F, Di Giandomenico S, Santorelli FM et al (2007) COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement. J Am Soc Nephrol 18:2773–2780CrossRefPubMedGoogle Scholar
  8. Doimo M, Desbats MA, Cerqua C, Cassina M, Trevisson E, Salviati L (2014) Genetics of coenzyme q10 deficiency. Mol Syndromol 5:156–162CrossRefPubMedPubMedCentralGoogle Scholar
  9. Duncan AJ, Bitner-Glindzicz M, Meunier B et al (2009) A nonsense mutation in COQ9 causes autosomal-recessive neonatal-onset primary coenzyme Q10 deficiency: a potentially treatable form of mitochondrial disease. Am J Hum Genet 84:558–566CrossRefPubMedPubMedCentralGoogle Scholar
  10. Freyer C, Stranneheim H, Naess K et al (2015) Rescue of primary ubiquinone deficiency due to a novel COQ7 defect using 2,4-dihydroxybensoic acid. J Med Genet 52:779–783CrossRefPubMedPubMedCentralGoogle Scholar
  11. Garcia-Corzo L, Luna-Sanchez M, Doerrier C et al (2013) Dysfunctional Coq9 protein causes predominant encephalomyopathy associated with CoQ deficiency. Hum Mol Genet 22:1233–1248CrossRefPubMedGoogle Scholar
  12. Heeringa SF, Chernin G, Chaki M et al (2011) COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J Clin Invest 121:2013–2024CrossRefPubMedPubMedCentralGoogle Scholar
  13. Lagier-Tourenne C, Tazir M, Lopez LC et al (2008) ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency. Am J Hum Genet 82:661–672CrossRefPubMedPubMedCentralGoogle Scholar
  14. Lohman DC, Forouhar F, Beebe ET et al (2014) Mitochondrial COQ9 is a lipid-binding protein that associates with COQ7 to enable coenzyme Q biosynthesis. Proc Natl Acad Sci U S A 111:E4697–E4705CrossRefPubMedPubMedCentralGoogle Scholar
  15. Lopez LC, Schuelke M, Quinzii CM et al (2006) Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. Am J Hum Genet 79:1125–1129CrossRefPubMedPubMedCentralGoogle Scholar
  16. Luna-Sanchez M, Diaz-Casado E, Barca E et al (2015) The clinical heterogeneity of coenzyme Q10 deficiency results from genotypic differences in the Coq9 gene. EMBO Mol Med 7:670–687CrossRefPubMedPubMedCentralGoogle Scholar
  17. Marbois B, Gin P, Faull KF et al (2005) Coq3 and Coq4 define a polypeptide complex in yeast mitochondria for the biosynthesis of coenzyme Q. J Biol Chem 280:20231–20238CrossRefPubMedGoogle Scholar
  18. Marbois B, Gin P, Gulmezian M, Clarke CF (2009) The yeast Coq4 polypeptide organizes a mitochondrial protein complex essential for coenzyme Q biosynthesis. Biochim Biophys Acta 1791:69–75CrossRefPubMedGoogle Scholar
  19. Mollet J, Giurgea I, Schlemmer D et al (2007) Prenyldiphosphate synthase, subunit 1 (PDSS1) and OH-benzoate polyprenyltransferase (COQ2) mutations in ubiquinone deficiency and oxidative phosphorylation disorders. J Clin Invest 117:765–772CrossRefPubMedPubMedCentralGoogle Scholar
  20. Quinzii C, Naini A, Salviati L et al (2006) A mutation in para-hydroxybenzoate-polyprenyl transferase (COQ2) causes primary coenzyme Q10 deficiency. Am J Hum Genet 78:345–349CrossRefPubMedGoogle Scholar
  21. Rahman S, Hargreaves I, Clayton P, Heales S (2001) Neonatal presentation of coenzyme Q10 deficiency. J Pediatr 139:456–458CrossRefPubMedGoogle Scholar
  22. Rodenburg RJ (2011) Biochemical diagnosis of mitochondrial disorders. J Inherit Metab Dis 34:283–292CrossRefPubMedGoogle Scholar
  23. Trevisson E, DiMauro S, Navas P, Salviati L (2011) Coenzyme Q deficiency in muscle. Curr Opin Neurol 24:449–456CrossRefPubMedGoogle Scholar
  24. Turunen M, Olsson J, Dallner G (2004) Metabolism and function of coenzyme Q. Biochim Biophys Acta 1660:171–199CrossRefPubMedGoogle Scholar
  25. Tzagoloff A, Dieckmann CL (1990) PET genes of Saccharomyces cerevisiae. Microbiol Rev 54:211–225PubMedPubMedCentralGoogle Scholar

Copyright information

© SSIEM 2018

Authors and Affiliations

  • Amanda C. Smith
    • 1
    • 2
  • Yoko Ito
    • 1
  • Afsana Ahmed
    • 1
  • Jeremy A. Schwartzentruber
    • 3
    • 4
  • Chandree L. Beaulieu
    • 1
  • Erika Aberg
    • 5
  • Jacek Majewski
    • 3
    • 4
  • Dennis E. Bulman
    • 1
  • Karina Horsting-Wethly
    • 6
  • Diana Vermunt-de Koning
    • 6
  • Care4Rare Canada Consortium
  • Richard J. Rodenburg
    • 6
  • Kym M. Boycott
    • 1
    • 2
  • Lynette S. Penney
    • 5
    • 7
  1. 1.Children’s Hospital of Eastern Ontario Research InstituteUniversity of OttawaOttawaCanada
  2. 2.Department of GeneticsChildren’s Hospital of Eastern OntarioOttawaCanada
  3. 3.McGill University and Genome Quebec Innovation CentreMontréalCanada
  4. 4.Department of Human GeneticsMcGill UniversityMontréalCanada
  5. 5.Maritime Medical Genetics ServiceIWK Health CentreHalifaxCanada
  6. 6.Radboud Center for Mitochondrial Medicine, Translational Metabolic LaboratoryRadboud University Medical CenterNijmegenThe Netherlands
  7. 7.Department of PediatricsDalhousie UniversityHalifaxCanada

Personalised recommendations