Advertisement

Keeping an eye on congenital disorders of O-glycosylation: a systematic literature review

  • R. Francisco
  • C. Pascoal
  • D. Marques-da-Silva
  • E. Morava
  • G. A. Gole
  • D. Coman
  • J. Jaeken
  • Vanessa dos Reis FerreiraEmail author
Review

Abstract

Congenital disorders of glycosylation (CDG) are a rapidly growing family comprising >100 genetic diseases. Some 25 CDG are pure O-glycosylation defects. Even among this CDG subgroup, phenotypic diversity is broad, ranging from mild to severe poly-organ/system dysfunction. Ophthalmic manifestations are present in 60% of these CDG. The ophthalmic manifestations in N-glycosylation-deficient patients have been described elsewhere. The present review documents the spectrum and incidence of eye disorders in patients with pure O-glycosylation defects with the aim of assisting diagnosis and management and promoting research.

Abbreviations

α-DG

Alpha-dystroglycan

AC

Anterior chamber

CDG

Congenital disorder(s) of glycosylation

ERG

Electroretinogram

FCMD

Fukuyama congenital muscular dystrophy

ILM

Inner limiting membrane

LRS

Larsen of Reunion Island syndrome

MEB

Muscle-eye-brain disease

PA

Peters anomaly

PHV

Persistent hyaloid vasculature

PHPV

Persistent hyperplastic primary vitreous

PPV

Persistent primary vitreous

PTM

Posttranslational modification

RP

Retinitis pigmentosa

VEP

Visual evoked potential

WWS

Walker-Warburg syndrome

Notes

Funding

This work was supported by the CDG Professionals and Patient Associations International Network (CDG & Allies – PPAIN) and Liliana Fellowships from APCDG attributed to Marques-da-Silva D. Francisco R. was supported by Fundação para a Ciência e Tecnologia (FCT). The authors confirmed independence from sponsors; the content of the article has not been influenced by sponsors.

Compliance with ethical standards

Conflict of interests

R. Francisco, C. Pascoal, D. Marques-da-Silva, E. Morava, G. A. Gole, D. Coman, J. Jaeken, and V. dos Reis Ferreira declare that they have no conflict of interest.

Animal rights

This review does not contain any studies with human or animal subjects performed by any of the authors.

Informed consent

No human studies were performed for this study.

Supplementary material

10545_2017_119_MOESM1_ESM.docx (14 kb)
ESM 1 (DOCX 13 kb)
10545_2017_119_MOESM2_ESM.jpg (85 kb)
ESM 2 (JPEG 85 kb)

References

  1. Ackroyd MR, Skordis L, Kaluarachchi M et al (2009) Reduced expression of fukutin related protein in mice results in a model for fukutin related protein associated muscular dystrophies. Brain 132:439–451PubMedCrossRefGoogle Scholar
  2. Ackroyd MR, Whitmore C, Prior S et al (2011) Fukutin-related protein alters the deposition of Laminin in the eye and brain. J Neurosci 31:12927–12935PubMedCrossRefGoogle Scholar
  3. Alazami AM, Al-Qattan SM, Faqeih E et al (2016) Expanding the clinical and genetic heterogeneity of hereditary disorders of connective tissue. Hum Genet 135:525–540PubMedCrossRefGoogle Scholar
  4. Aliferis K, Marsal C, Pelletier V et al (2010) A novel nonsense B3GALTL mutation confirms Peters plus syndrome in a patient with multiple malformations and Peters anomaly. Ophthalmic Genet 31:205–208PubMedCrossRefGoogle Scholar
  5. Argüeso P, Tisdale A, Mandel U et al (2003) The cell-layer- and cell-type-specific distribution of Ga1NAc-transferases in the ocular surface epithelia is altered during keratinization. Investig Ophthalmol Vis Sci 44:86–92CrossRefGoogle Scholar
  6. Arunrut T, Sabbadini M, Jain M et al (2016) Corneal clouding, cataract, and colobomas with a novel missense mutation in B4GALT7- a review of eye anomalies in the linkeropathy syndromes. Am J Med Genet Part A 9999A:1–8Google Scholar
  7. Avşar-Ban E, Ishikawa H, Manya H et al (2010) Protein O-mannosylation is necessary for normal embryonic development in zebrafish. Glycobiology 20:1089–1102PubMedCrossRefGoogle Scholar
  8. Baasanjav S, Al-Gazali L, Hashiguchi T et al (2011) Faulty initiation of proteoglycan synthesis causes cardiac and joint defects. Am J Hum Genet 89:15–27PubMedPubMedCentralCrossRefGoogle Scholar
  9. Barresi R, Michele DE, Kanagawa M et al (2004) LARGE can functionally bypass α-dystroglycan glycosylation defects in distinct congenital muscular dystrophies. Nat Med 10:696–703PubMedCrossRefGoogle Scholar
  10. Beltrán-Valero de Bernabé D, van Bokhoven H, van Beusekom E et al (2003) A homozygous nonsense mutation in the Fukutin gene causes a Walker-Warburg syndrome phenotype. J Med Genet 40:845–848PubMedCrossRefGoogle Scholar
  11. Beltrán-Valero de Bernabé D, Currier S, Steinbrecher A et al (2002) Mutations in the O-Mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome. Am J Hum Genet 71:1033–1043PubMedPubMedCentralCrossRefGoogle Scholar
  12. Beltrán-Valero de Bernabe D, Voit T, Longman C et al (2004) Mutations in the FKRP gene can cause muscle-eye-brain disease and Walker-Warburg syndrome. J Med Genet 41:e61–e61PubMedCrossRefGoogle Scholar
  13. Ben Mahmoud A, Siala O, Ben MR et al (2013) First functional analysis of a novel splicing mutation in the B3GALTL gene by an ex vivo approach in Tunisian patients with typical Peters plus syndrome. Gene 532:13–17PubMedCrossRefGoogle Scholar
  14. Biancheri R, Bertini E, Falace A et al (2006) POMGnT1 mutations in congenital muscular dystrophy genotype-phenotype correlation and expanded clinical Spectrum. Arch Neurol 63:1491–1495PubMedCrossRefGoogle Scholar
  15. Bouchet C, Gonzales M, Vuillaumier-Barrot S et al (2007a) Molecular heterogeneity in fetal forms of type II lissencephaly. Hum Mutat 28:1020–1027PubMedCrossRefGoogle Scholar
  16. Bouchet C, Vuillaumier-Barrot S, Gonzales M et al (2007b) Detection of an Alu insertion in the POMT1 gene from three French Walker Warburg syndrome families. Mol Genet Metab 90:93–96PubMedCrossRefGoogle Scholar
  17. Brasseur-Daudruy M, Vivier PH, Ickowicz V et al (2012) Walker-Warburg syndrome diagnosed by findings of typical ocular abnormalities on prenatal ultrasound. Pediatr Radiol 42:488–490PubMedCrossRefGoogle Scholar
  18. Cartault F, Munier P, Jacquemont M-L et al (2015) Expanding the clinical spectrum of B4GALT7 deficiency: homozygous p.R270C mutation with founder effect causes Larsen of Reunion Island syndrome. Eur J Hum Genet 23:49–53PubMedCrossRefGoogle Scholar
  19. Chan YM, Keramaris-Vrantsis E, Lidov HG et al (2010) Fukutin-related protein is essential for mouse muscle, brain and eye development and mutation recapitulates the wide clinical spectrums of dystroglycanopathies. Hum Mol Genet 19:3995–4006PubMedCrossRefGoogle Scholar
  20. Chang W, Winder TL, LeDuc CA et al (2009) Founder Fukutin mutation causes Walker-Warburg syndrome in four Ashkenazi Jewish families. Prenat Diagn 29:560–569PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cirak S, Foley AR, Herrmann R et al (2013) ISPD gene mutations are a common cause of congenital and limb-girdle muscular dystrophies. Brain 136:269–281PubMedPubMedCentralCrossRefGoogle Scholar
  22. Clarke NF, Maugenre S, Vandebrouck A et al (2011) Congenital muscular dystrophy type 1D (MDC1D) due to a large intragenic insertion/deletion, involving intron 10 of the LARGE gene. Eur J Hum Genet 19:452–457PubMedPubMedCentralCrossRefGoogle Scholar
  23. Clement E, Mercuri E, Godfrey C et al (2008a) Brain involvement in muscular dystrophies with defective dystroglycan glycosylation. Ann Neurol 64:573–582PubMedCrossRefGoogle Scholar
  24. Clement EM, Godfrey C, Tan J, Brockington M (2008b) Mild POMGnT1 mutations underlie a novel limb-girdle muscular dystrophy variant. Arch Neurol 65:137–141PubMedCrossRefGoogle Scholar
  25. Clements R, Turk R, Campbell KP, Wright KM (2017) Dystroglycan maintains inner limiting membrane integrity to coordinate retinal development. J Neurosci 946–17.  https://doi.org/10.1523/JNEUROSCI.0946-17.2017
  26. Coman D, Irving M, Kannu P et al (2008) The skeletal manifestations of the congenital disorders of glycosylation. Clin Genet 73:507–515PubMedCrossRefGoogle Scholar
  27. Corso-Díaz X, Borrie AE, Bonaguro R et al (2012) Absence of NR2E1 mutations in patients with aniridia. Mol Vis 18:2770–2782PubMedPubMedCentralGoogle Scholar
  28. Cotarelo RP, Fano O, Raducu M et al (2009) A double homozygous mutation in the POMT1 gene involving exon skipping gives rise to Walker-Warburg syndrome in two Spanish gypsy families. Clin Genet 76:108–112PubMedCrossRefGoogle Scholar
  29. Cotarelo RP, Valero MC, Prados B et al (2008) Two new patients bearing mutations in the fukutin gene confirm the relevance of this gene in Walker-Warburg syndrome. Clin Genet 73:139–145PubMedCrossRefGoogle Scholar
  30. Currier SC, Lee CK, Chang BS et al (2005) Mutations in POMT1 are found in a minority of patients with walker-warburg syndrome. Am J Med Genet 133(A):53–57CrossRefGoogle Scholar
  31. Czeschik JC, Hehr U, Hartmann B et al (2013) 160kb deletion in ISPD unmasking a recessive mutation in a patient with Walker-Warburg syndrome. Eur J Med Genet 56:689–694PubMedCrossRefGoogle Scholar
  32. D’Cruz TS, Weibley BN, Kimball SR, Barber AJ (2012) Post-translational processing of Synaptophysin in the rat retina is disrupted by diabetes. PLoS One 7(9):e44711PubMedPubMedCentralCrossRefGoogle Scholar
  33. Danjo Y, Watanabe H, Tisdale AS et al (1998) Alteration of mucin in human conjunctival epithelia in dry eye. Investig Ophthalmol Vis Sci 39:2602–2609Google Scholar
  34. Dassie-Ajdid J, Causse A, Poidvin A et al (2009) Novel B3GALTL mutation in Peters-plus syndrome. Clin Genet 76:490–492PubMedCrossRefGoogle Scholar
  35. de Nie K, Wesseling PMDP et al (2016) Unique presentation of corneal opacity in Peters plus syndrome: an unusual form of Peters anomaly showing tissue repair in serial analysis. Cornea 35:277–280PubMedCrossRefGoogle Scholar
  36. Demir E, Gucuyener K, Akturk A et al (2009) An unusual presentation of muscle-eye-brain disease: severe eye abnormalities with mild muscle and brain involvement. Neuromuscul Disord 19:692–695PubMedCrossRefGoogle Scholar
  37. Devisme L, Bouchet C, Gonzals M et al (2012) Cobblestone lissencephaly: Neuropathological subtypes and correlations with genes of dystroglycanopathies. Brain 135:469–482PubMedCrossRefGoogle Scholar
  38. Di Costanzo S, Balasubramanian A, Pond HL et al (2014) POMK mutations disrupt muscle development leading to a spectrum of neuromuscular presentations. Hum Mol Genet 23:5781–5792PubMedPubMedCentralCrossRefGoogle Scholar
  39. Diesen C, Saarinen A, Pihko H et al (2004) POMGnT1 mutation and phenotypic spectrum in muscle-eye-brain disease. J Med Genet 41:e115–e115PubMedPubMedCentralCrossRefGoogle Scholar
  40. Faiyaz-Ul-Haque M, Zaidi SHE, Al-Ali M et al (2004) A novel missense mutation in the galactosyltransferase-I (B4GALT7) gene in a family exhibiting facioskeletal anomalies and Ehlers-Danlos syndrome resembling the progeroid type. Am J Med Genet A 128A:39–45PubMedCrossRefGoogle Scholar
  41. Faletra F, Athanasakis E, Minen F et al (2011) Vertebral defects in patients with Peters plus syndrome and mutations in B3GALTL. Ophthalmic Genet 32:256–258PubMedCrossRefGoogle Scholar
  42. Falsaperla R, Giunta L, Lubrano R et al (2015) Long-term survival in a patient with muscle-eye-brain disease. Neurol Sci 36:2147–2149PubMedCrossRefGoogle Scholar
  43. Farnoodian M, Kinter JB, Yadranji Aghdam S et al (2015) Expression of pigment epithelium-derived factor and thrombospondin-1 regulate proliferation and migration of retinal pigment epithelial cells. Physiol Rep 3:e12266–e12266PubMedPubMedCentralCrossRefGoogle Scholar
  44. Freeze HH, Eklund EA, Ng BG, Patterson MC (2015) Neurological aspects of human Glycosylation disorders. Annu Rev Neurosci 38:105–125PubMedPubMedCentralCrossRefGoogle Scholar
  45. Garner B, Merry AH, Royle L et al (2001) Structural elucidation of the N- and O-Glycans of human Apolipoprotein(a): role of O-glycans in conferring protease resistance. J Biol Chem 276:22200–22208PubMedCrossRefGoogle Scholar
  46. Gerin I, Ury B, Breloy I et al (2016) ISPD produces CDP-ribitol used by FKTN and FKRP to transfer ribitol phosphate onto α-dystroglycan. Nat Commun 7:11534PubMedPubMedCentralCrossRefGoogle Scholar
  47. Godfrey C, Clement E, Mein R et al (2007) Refining genotype-phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain 130:2725–2735PubMedCrossRefGoogle Scholar
  48. Guo MH, Stoler J, Lui J et al (2013) Redefining the Progeroid form of Ehlers-Danlos syndrome: report of the fourth patient with B4GALT7 deficiency and review of the literature. Am J Med Genet A 161:2519–2527PubMedCentralGoogle Scholar
  49. Guzman-Aranguez A, Argüeso P (2010) Structure and biological roles of Mucin-type O-glycans at the ocular surface. Ocul Surf 8:8–17PubMedPubMedCentralCrossRefGoogle Scholar
  50. Guzman-Aranguez A, Woodward AM, Pintor J, Argüeso P (2012) Targeted disruption of core 1 β1,3-galactosyltransferase (C1galt1) induces apical endocytic trafficking in human corneal keratinocytes. PLoS One 7:1–10CrossRefGoogle Scholar
  51. Haldeman-Englert CR, Naeem T, Geiger EA et al (2009) A 781-kb deletion of 13q12.3 in a patient with Peters plus syndrome. Am J Med Genet Part A 149:1842–1845CrossRefGoogle Scholar
  52. Han J, Townes-Anderson E (2012) Cell specific post-translational processing of Pikachurin, a protein involved in retinal Synaptogenesis. PLoS One 7(12):e50552PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hanemaaijer N, Dijkhuizen T, Haadsma M et al (2009) A 649 kb microduplication in 1p34.1, including POMGNT1, in a patient with microcephaly, coloboma and laryngomalacia; and a review of the literature. Eur J Med Genet 52:116–119PubMedCrossRefGoogle Scholar
  54. Hehr U, Uyanik G, Gross C et al (2007) Novel POMGnT1 mutations define broader phenotypic spectrum of muscle-eye-brain disease. Neurogenetics 8:279–288PubMedCrossRefGoogle Scholar
  55. Hess D, Keusch JJ, Lesnik Oberstein SA et al (2008) Peters plus syndrome is a new congenital disorder of glycosylation and involves defective O-glycosylation of thrombospondin type 1 repeats. J Biol Chem 283:7354–7360PubMedCrossRefGoogle Scholar
  56. Hiscott P, Paraoan L, Choudhary A et al (2006) Thrombospondin 1, thrombospondin 2 and the eye. Prog Retin Eye Res 25:1–18PubMedCrossRefGoogle Scholar
  57. Hoang QV, Blair MP, Rahmani B et al (2011) Multiple retina holes and peripheral nonperfusion in muscle-eye-brain disease. Arch Ophthalmol 129:2011–2013CrossRefGoogle Scholar
  58. Hu H, Candiello J, Zhang P et al (2010) Retinal ectopias and mechanically weakened basement membrane in a mouse model of muscle-eye-brain (MEB) disease congenital muscular dystrophy. Mol Vis 16:1415–1428PubMedPubMedCentralGoogle Scholar
  59. Imbert Y, Jumblatt MM, Foulks GN et al (2006) Expression in human ocular surface tissues of the GalNAc-Transferases that initiate. Cornea 25:1193–1199PubMedCrossRefGoogle Scholar
  60. Jae LT, Raaben M, Riemersma M et al (2013) Deciphering the Glycosylome of Dystroglycanopathies using haploid screens for Lassa virus entry. Science (80-) 340:479–483CrossRefGoogle Scholar
  61. Jaeken J, Péanne R (2017) What is new in CDG? J Inherit Metab Dis 40:569–586PubMedCrossRefGoogle Scholar
  62. Jeong S, Patel N, Edlund CK et al (2015) Identification of a novel mucin gene HCG22 associated with steroid-induced ocular hypertension. Investig Ophthalmol Vis Sci 56:2737–2748CrossRefGoogle Scholar
  63. Jiao H, Manya H, Wang S et al (2013) Novel POMGnT1 mutations cause muscle-eye-brain disease in Chinese patients. Mol Gen Genomics 288:297–308CrossRefGoogle Scholar
  64. Jones KL, Schwarze U, Adam MP et al (2015) A homozygous B3GAT3 mutation causes a severe syndrome with multiple fractures, extending the number of Linkeropathy syndromes. Am J Med Genet A 167:2691–2696PubMedCentralCrossRefGoogle Scholar
  65. Judaš M, Sedmak G, Radoš M et al (2009) POMT1-associated walker-warburg syndrome: a disorder of dendritic development of neocortical neurons. Neuropediatrics 40:6–14PubMedCrossRefGoogle Scholar
  66. Kapoor S, Mukherjee SB, Arora R, Shroff D (2008) Peters plus syndrome. Indian J Pediatr 75:635–637PubMedCrossRefGoogle Scholar
  67. Kava M, Chitayat D, Blaser S et al (2013) Eye and brain abnormalities in congenital muscular dystrophies caused by fukutin-related protein gene (FKRP) mutations. Pediatr Neurol 49:374–378PubMedCrossRefGoogle Scholar
  68. Kawahara G, Guyon JR, Nakamura Y, Kunkel LM (2010) Zebrafish models for human FKRP muscular dystrophies. Hum Mol Genet 19:623–633PubMedCrossRefGoogle Scholar
  69. Kim DS, Hayashi YK, Matsumoto H et al (2004) POMT1 mutation results in defective glycosylation and loss of laminin-binding activity in alpha-DG. Neurology 62:1009–1011PubMedCrossRefGoogle Scholar
  70. Kingsley PD, Hagen KG, Maltby KM et al (2000) Diverse spatial expression patterns of UDP-GalNAc:polypeptide N-acetylgalactosaminyl-transferase family member mRNAs during mouse development. Glycobiology 10:1317–1323PubMedCrossRefGoogle Scholar
  71. Kondo-Lida E, Kobayashi K, Watanabe M et al (1999) Novel mutations and genotype-phenotype relationships in 107 families with Fukuyama-type congenital muscular dystrophy (FCMD). Hum Mol Genet 8:2303–2309CrossRefGoogle Scholar
  72. Kondo H, Saito K, Urano M et al (2010) A case of Fukuyama congenital muscular dystrophy associated with negative electroretinograms. Jpn J Ophthalmol 54:622–624PubMedCrossRefGoogle Scholar
  73. Kurahashi H, Taniguchi M, Meno C et al (2005) Basement membrane fragility underlies embryonic lethality in fukutin-null mice. Neurobiol Dis 19:208–217PubMedCrossRefGoogle Scholar
  74. Kuwabara N, Manya H, Yamada T et al (2016) Carbohydrate-binding domain of the POMGnT1 stem region modulates O -mannosylation sites of α-dystroglycan. PNAS 113:9280–9285PubMedPubMedCentralCrossRefGoogle Scholar
  75. Lee Y, Kameya S, Cox GA et al (2005) Ocular abnormalities in Largemyd and Largevls mice, spontaneous models for muscle, eye, and brain diseases. Mol Cell Neurosci 30:160–172PubMedCrossRefGoogle Scholar
  76. Lefebvre T, Planque N, Leleu D et al (2002) O-glycosylation of the nuclear forms of Pax-6 products in quail neuroretina cells. J Cell Biochem 85:208–218PubMedCrossRefGoogle Scholar
  77. Lesnik Oberstein SAJ, Kriek M, White SJ et al (2006) Peters plus syndrome is caused by mutations in B3GALTL, a putative glycosyltransferase. Am J Hum Genet 79:562–566PubMedPubMedCentralCrossRefGoogle Scholar
  78. Liu J, Ball SL, Yang Y et al (2006) A genetic model for muscle-eye-brain disease in mice lacking protein O-mannose 1,2-N-acetylglucosaminyltransferase (POMGnT1). Mech Dev 123:228–240PubMedCrossRefGoogle Scholar
  79. Longman C, Brockington M, Torelli S et al (2003) Mutations in the human LARGE gene cause MDC1D, a novel form of congenital muscular dystrophy with severe mental retardation and abnormal glycosylation of α-dystroglycan. Hum Mol Genet 12:2853–2861PubMedCrossRefGoogle Scholar
  80. Louhichi N, Triki C, Quijano-Roy S et al (2004) New FKRP mutations causing congenital muscular dystrophy associated with mental retardation and central nervous system abnormalities. Identification of a founder mutation in Tunisian families. Neurogenetics 5:27–34PubMedCrossRefGoogle Scholar
  81. Malfait F, Kariminejad A, Van Damme T et al (2013) Defective initiation of glycosaminoglycan synthesis due to B3GALT6 mutations causes a pleiotropic Ehlers-Danlos-syndrome-like connective tissue disorder. Am J Hum Genet 92:935–945PubMedPubMedCentralCrossRefGoogle Scholar
  82. Manzini MC, Gleason D, Chang BS et al (2008) Ethnically diverse causes of Walker-Warburg syndrome (WWS): FCMD mutations are a more common cause of WWS outside of the Middle East. Hum Mutat 29:E231–E241PubMedPubMedCentralCrossRefGoogle Scholar
  83. Marques-da-Silva D, dos Reis FV, Monticelli M et al (2017a) Liver involvement in congenital disorders of glycosylation (CDG). A systematic review of the literature. J Inherit Metab Dis 40:195–207PubMedCrossRefGoogle Scholar
  84. Marques-da-Silva D, Francisco R, Webster D et al (2017b) Cardiac complications of congenital disorders of glycosylation (CDG): a systematic review of the literature. J Inherit Metab Dis.  https://doi.org/10.1007/s10545-017-0066-y
  85. Matsumoto H, Hayashi YK, Kim DS et al (2005) Congenital muscular dystrophy with glycosylation defects of α-dystroglycan in Japan. Neuromuscul Disord 15:342–348PubMedCrossRefGoogle Scholar
  86. Meilleur KG, Zukosky K, Medne L et al (2014) Clinical, pathologic, and mutational Spectrum of Dystroglycanopathy caused by LARGE mutations. J Neuropathol Exp Neurol 73:425–441PubMedPubMedCentralCrossRefGoogle Scholar
  87. Mercuri E, Messina S, Bruno C et al (2009) Congenital muscular dystrophies with defective glycosylation of dystroglycan: a population study. Neurology 72:1802–1809PubMedCrossRefGoogle Scholar
  88. Mercuri E, Topaloglu H, Brockington M et al (2006) Spectrum of brain changes in patients with congenital muscular dystrophy and FKRP gene mutations. Arch Neurol 63:251–257PubMedCrossRefGoogle Scholar
  89. Monticelli M, Ferro T, Jaeken J et al (2016) Immunological aspects of congenital disorders of glycosylation (CDG): a review. J Inherit Metab Dis 39:765–780PubMedCrossRefGoogle Scholar
  90. Morava E, Wosik H, Sykut-Cegielska J et al (2009) Ophthalmological abnormalities in children with congenital disorders of glycosylation type I. Br J Ophthalmol 93:350–354PubMedCrossRefGoogle Scholar
  91. Munns CF, Fahiminiya S, Poudel N et al (2015) Homozygosity for frameshift mutations in XYLT2 result in a spondylo-ocular syndrome with bone fragility, cataracts, and hearing defects. Am J Hum Genet 96:971–978PubMedPubMedCentralCrossRefGoogle Scholar
  92. Nakajima M, Mizumoto S, Miyake N et al (2013) Mutations in B3GALT6, which encodes a glycosaminoglycan linker region enzyme, cause a spectrum of skeletal and connective tissue disorders. Am J Hum Genet 92:927–934PubMedPubMedCentralCrossRefGoogle Scholar
  93. Nycholat CM, McBride R, Ekiert DC et al (2012) Recognition of sialylated poly-N-acetyllactosamine chains on N- and O-linked glycans by human and avian influenza a virus hemagglutinins. Angew Chem Int Ed Engl 51:4860–4863PubMedPubMedCentralCrossRefGoogle Scholar
  94. Ohtsuka Y, Kanagawa M, Yu C-C et al (2015) Fukutin is prerequisite to ameliorate muscular dystrophic phenotype by myofiber-selective LARGE expression. Sci Rep 9 5:8316CrossRefGoogle Scholar
  95. Pascual-Castroviejo I, Pascual-Pascual SI, Gutiérrez-Molina M et al (2005) Trastorno músculo-ojo-cerebro. Presentación de un caso con estudio genético. Neurologia 20:261–266PubMedGoogle Scholar
  96. Patnaik SK, Stanley P (2005) Mouse large can modify complex N- and mucin O-glycans on α-dystroglycan to induce laminin binding. J Biol Chem 280:20851–20859PubMedCrossRefGoogle Scholar
  97. Prados B, Peña A, Cotarelo RP et al (2007) Expression of the murine Pomt1 gene in both the developing brain and adult muscle tissues and its relationship with clinical aspects of Walker-Warburg syndrome. Am J Pathol 170:1659–1668PubMedPubMedCentralCrossRefGoogle Scholar
  98. Raducu M, Cotarelo RP, Simón R et al (2013) Clinical features and molecular characterization of a patient with muscle-eye-brain disease: a novel mutation in the POMGNT1 gene. J Child Neurol 29:289–294PubMedCrossRefGoogle Scholar
  99. Reis LM, Tyler RC, Abdul-Rahman O et al (2008) Mutation analysis of B3GALTL in Peters plus syndrome. Am J Med Genet A 146A:2603–2610PubMedPubMedCentralCrossRefGoogle Scholar
  100. Roscioli T, Kamsteeg E, Buysse K, Maystadt I (2012) Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of α-dystroglycan. Nat Genet 44:581–585PubMedPubMedCentralCrossRefGoogle Scholar
  101. Rurak J, Noel G, Lui L et al (2007) Distribution of potassium ion and water permeable channels at perivascular glia in brain and retina of the Largemyd mouse. J Neurochem 103:1940–1953PubMedCrossRefGoogle Scholar
  102. Salter CG, Davies JH, Moon RJ et al (2016) Further defining the phenotypic spectrum of B4GALT7 mutations. Am J Med Genet Part A 170A:1556–1563CrossRefGoogle Scholar
  103. Saredi S, Ardissone A, Ruggieri A et al (2012) Novel POMGNT1 point mutations and intragenic rearrangements associated with muscle-eye-brain disease. J Neurol Sci 318:45–50PubMedPubMedCentralCrossRefGoogle Scholar
  104. Schollhorn L, Bock F, Cursiefen C (2015) Thrombospondin-1 as a regulator of corneal inflammation and Lymphangiogenesis: effects on dry eye disease and corneal graft immunology. J Ocul Pharmacol Ther 31:376–385PubMedCrossRefGoogle Scholar
  105. Schoner K, Kohlhase J, Müller AM et al (2013) Hydrocephalus, agenesis of the corpus callosum, and cleft lip/palate represent frequent associations in fetuses with Peters’ plus syndrome and B3GALTL mutations- Fetal PPS phenotypes, expanded by Dandy Walker cyst and encephalocele. Prenat Diagn 33:75–80PubMedCrossRefGoogle Scholar
  106. Sellars EA, Bosanko KA, Lepard T et al (2014) A newborn with complex skeletal abnormalities, joint contractures, and bilateral corneal clouding with sclerocornea. Semin Pediatr Neurol 21:84–87PubMedCrossRefGoogle Scholar
  107. Shenoy AM, Markowitz JA, Bonnemann CG et al (2010) Muscle-eye-brain disease. J Clin Neuromuscul Dis 11:124–126PubMedPubMedCentralCrossRefGoogle Scholar
  108. Siala O, Belguith N, Kammoun H et al (2012) Two Tunisian patients with Peters plus syndrome harbouring a novel splice site mutation in the B3GALTL gene that modulates the mRNA secondary structure. Gene 507:68–73PubMedCrossRefGoogle Scholar
  109. Silan F, Yoshioka M, Kobayashi K et al (2003) A new mutation of the fukutin gene in a non-Japanese patient. Ann Neurol 53:392–396PubMedCrossRefGoogle Scholar
  110. Somers WS, Tang J, Shaw GD, Camphausen RT (2000) Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLe(X) and PSGL-1. Cell 103:467–479PubMedCrossRefGoogle Scholar
  111. Stevens E, Carss KJ, Cirak S et al (2013) Mutations in B3GALNT2 cause congenital muscular dystrophy and hypoglycosylation of α-dystroglycan. Am J Hum Genet 92:354–365PubMedPubMedCentralCrossRefGoogle Scholar
  112. Takahashi H, Kanesaki H, Igarashi T et al (2011) Reactive gliosis of astrocytes and Müller glial cells in retina of POMGnT1-deficient mice. Mol Cell Neurosci 47:119–130PubMedCrossRefGoogle Scholar
  113. Takeda S, Kono M, Sasaki J et al (2003) Fukutin is required for maintenance of muscle integrity, cortical histiogenesis and normal eye development. Hum Mol Genet 12:1449–1459PubMedCrossRefGoogle Scholar
  114. Takeichi T, Nanda A, Aristodemou S et al (2015) Whole-exome sequencing diagnosis of two autosomal recessive disorders in one family. Br J Dermatol 172:1407–1411PubMedCrossRefGoogle Scholar
  115. Taniguchi K, Kobayashi K, Saito K et al (2003) Worldwide distribution and broader clinical spectrum of muscle-eye-brain disease. Hum Mol Genet 12:527–534PubMedCrossRefGoogle Scholar
  116. Taylan F, Costantini A, Coles N et al (2016) Spondyloocular syndrome: novel mutations in XYLT2 gene and Expansion of the phenotypic Spectrum. J Bone Miner Res 31:1577–1585PubMedCrossRefGoogle Scholar
  117. Teber S, Sezer T, Kafali M et al (2008) Severe muscle-eye-brain disease is associated with a homozygous mutation in the POMGnT1 gene. Eur J Paediatr Neurol 12:133–136PubMedCrossRefGoogle Scholar
  118. Thornhill P, Bassett D, Lochmüller H et al (2008) Developmental defects in a zebrafish model for muscular dystrophies associated with the loss of fukutin-related protein (FKRP). Brain 131:1551–1561PubMedCrossRefGoogle Scholar
  119. Toda T, Yoshioka M, Nakahori Y et al (1995) Genetic identity of Fukuyama-type congenital muscular dystrophy and Walker-Warburg syndrome. Ann Neurol 37:99–101PubMedCrossRefGoogle Scholar
  120. Trovato R, Astrea G, Bartalena L et al (2014) Elevated serum Creatine Kinase and small cerebellum prompt diagnosis of congenital muscular dystrophy due to FKRP mutations. J Child Neurol 29:394–398PubMedCrossRefGoogle Scholar
  121. Uribe ML, Haro C, Ventero MP et al (2016) Expression pattern in retinal photoreceptors of POMGnT1, a protein involved in muscle-eye-brain disease. Mol Vis 22:658–673PubMedPubMedCentralGoogle Scholar
  122. Vajsar J, Baskin B, Swoboda K et al (2008) Walker-Warburg syndrome with POMT1 mutations can be associated with cleft lip and cleft palate. Neuromuscul Disord 18:675–677PubMedCrossRefGoogle Scholar
  123. van Reeuwijk J, Jansen M, van den Elzen C et al (2005) POMT2 mutations cause -dystroglycan hypoglycosylation and Walker-Warburg syndrome. J Med Genet 42:907–912PubMedPubMedCentralCrossRefGoogle Scholar
  124. van Reeuwijk J, Maugenre S, van den Elzen C et al (2006) The expanding phenotype of mutations: FromWalker-Warburg syndrome to congenital muscular dystrophy, Microcephaly, POMT1 and mental retardation. Hum Mutat 27:453–459PubMedCrossRefGoogle Scholar
  125. van Reeuwijk J, Grewal PK, Salih MAM et al (2007) Intragenic deletion in the LARGE gene causes Walker-Warburg syndrome. Hum Genet 121:685–690PubMedPubMedCentralCrossRefGoogle Scholar
  126. van Reeuwijk J, Olderode-Berends MJW, van den Elzen C et al (2010) A homozygous FKRP start codon mutation is associated with Walker-Warburg syndrome, the severe end of the clinical spectrum. Clin Genet 78:275–281PubMedCrossRefGoogle Scholar
  127. van den Steen P, Rudd PM, Dwek RA, Opdenakker G (1998) Concepts and principles of O-linked Glycosylation. Crit Rev Biochem Mol Biol 33:151–208PubMedCrossRefGoogle Scholar
  128. Vasudevan D, Takeuchi H, Johar SS et al (2015) Peters plus syndrome mutations disrupt a noncanonical ER quality-control mechanism. Curr Biol 25:286–295PubMedCrossRefGoogle Scholar
  129. Vervoort VS, Holden KR, Ukadike KC et al (2004) POMGnT1 gene alterations in a family with neurological abnormalities. Ann Neurol 56:143–148PubMedCrossRefGoogle Scholar
  130. von Oettingen JE, Tan W-H, Dauber A, Von Oettingen J (2014) Skeletal dysplasia, global developmental delay, and multiple congenital anomalies in a 5 year-old boy– report of the second family with B3GAT3 mutation and expansion of the phenotype. Am J Med Genet A 164A(6):1580–1586CrossRefGoogle Scholar
  131. von Renesse A, Petkova MV, Lützkendorf S et al (2014) POMK mutation in a family with congenital muscular dystrophy with merosin deficiency, hypomyelination, mild hearing deficit and intellectual disability. J Med Genet 51:275–282CrossRefGoogle Scholar
  132. Vuillaumier-Barrot S, Bouchet-Seraphin C, Chelbi M et al (2011) Intragenic rearrangements in LARGE and POMGNT1 genes in severe dystroglycanopathies. Neuromuscul Disord 21:782–790PubMedCrossRefGoogle Scholar
  133. Vuillaumier-Barrot S, Bouchet-Séraphin C, Chelbi M et al (2012) Identification of mutations in TMEM5 and ISPD as a cause of severe cobblestone lissencephaly. Am J Hum Genet 91:1135–1143PubMedPubMedCentralCrossRefGoogle Scholar
  134. Vuillaumier-Barrot S, Quijano-Roy S, Bouchet-Seraphin C et al (2009) Four Caucasian patients with mutations in the fukutin gene and variable clinical phenotype. Neuromuscul Disord 19:182–188PubMedCrossRefGoogle Scholar
  135. Wang NHH, Chen SJ, Yang CF et al (2016) Homozygosity mapping and whole-genome sequencing links a missense mutation in POMGNT1 to autosomal recessive retinitis pigmentosa. Investig Ophthalmol Vis Sci 57:3601–3609CrossRefGoogle Scholar
  136. Weh E, Reis LM, Tyler RC et al (2014) Novel B3GALTL mutations in classic Peters plus syndrome and lack of mutations in a large cohort of patients with similar phenotypes. Obesity 86:142–148Google Scholar
  137. Willer T, Lee H, Lommel M et al (2012) ISPD loss-of-function mutations disrupt dystroglycan O- mannosylation and cause Walker-Warburg syndrome. Nat Genet 44:575–580PubMedPubMedCentralCrossRefGoogle Scholar
  138. Willer T, Prados B, Falcón-Pérez JM et al (2004) Targeted disruption of the Walker-Warburg syndrome gene Pomt1 in mouse results in embryonic lethality. Proc Natl Acad Sci U S A 101:14126–14131PubMedPubMedCentralCrossRefGoogle Scholar
  139. Wood AJ, Müller JS, Jepson CD et al (2011) Abnormal vascular development in zebrafish models for fukutin and FKRP deficiency. Hum Mol Genet 20:4879–4890PubMedCrossRefGoogle Scholar
  140. Xu L, Lu PJ, Wang C-H et al (2013) Adeno-associated virus 9 mediated FKRP gene therapy restores functional glycosylation of α-dystroglycan and improves muscle functions. Mol Ther 21:1832–1840PubMedPubMedCentralCrossRefGoogle Scholar
  141. Xu M, Yamada T, Sun Z et al (2016) Mutations in POMGNT1 cause non-syndromic retinitis pigmentosa. Hum Mol Genet 25:1–10CrossRefGoogle Scholar
  142. Xu Z, Weiss A (2002) Negative regulation of CD45 by differential homodimerization of the alternatively spliced isoforms. Nat Immunol 3:764–771PubMedCrossRefGoogle Scholar
  143. Yanagisawa A, Bouchet C, Quijano-Roy S et al (2009) POMT2 intragenic deletions and splicing abnormalities causing congenital muscular dystrophy with mental retardation. Eur J Med Genet 52:201–206PubMedCrossRefGoogle Scholar
  144. Yanagisawa A, Bouchet C, Van Den Bergh PYK et al (2007) New POMT2 mutations causing congenital muscular dystrophy : identification of a founder mutation new POMT2 mutations causing congenital muscular dystrophy identification of a founder mutation. Neurology 69:1254–1260PubMedCrossRefGoogle Scholar
  145. Yang H, Manya H, Kobayashi K et al (2016) Analysis of phenotype, enzyme activity and genotype of Chinese patients with POMT1 mutation. J Hum Genet Adv 61(8):753–759CrossRefGoogle Scholar
  146. Yis U, Uyanik G, Heck PB et al (2011) Fukutin mutations in non-Japanese patients with congenital muscular dystrophy: less severe mutations predominate in patients with a non-Walker-Warburg phenotype. Neuromuscul Disord 21:20–30PubMedCrossRefGoogle Scholar
  147. Yis U, Uyanik G, Kurul S et al (2007) A case of Walker-Warburg syndrome resulting from a homozygous POMT1 mutation. Eur J Paediatr Neurol 11:46–49PubMedCrossRefGoogle Scholar
  148. Yiş U, Uyanik G, Rosendahl DM et al (2014) Clinical, radiological, and genetic survey of patients with muscle-eye-brain disease caused by mutations in POMGNT1. Pediatr Neurol 50:491–497PubMedCrossRefGoogle Scholar
  149. Yoshida-Moriguchi T, Yu L, Stalnaker SH, et al (2010) O-Mannosyl Phosphorylation of Alpha-Dystroglycan is Required for Laminin Binding 327:88–92Google Scholar
  150. Yoshioka M, Tatsushi T, Shigekazu K, Kenzo H (1999) Broader clinical Spectrum of Fukuyama-type congenital muscular dystrophy manifested by Haplotype analysis. J Child Neurol 14:711–715PubMedCrossRefGoogle Scholar
  151. Zhang W, Vajsar J, Cao P et al (2003) Enzymatic diagnostic test for muscle-eye-brain type congenital muscular dystrophy using commercially available reagents. Clin Biochem 36:339–344PubMedCrossRefGoogle Scholar
  152. Zhou M, Wang H, Ren H et al (2017) Large is required for normal astrocyte migration and retinal vasculature development. Cell Biosci 17 7:–18Google Scholar

Copyright information

© SSIEM 2018

Authors and Affiliations

  • R. Francisco
    • 1
    • 2
    • 3
  • C. Pascoal
    • 1
    • 2
    • 3
  • D. Marques-da-Silva
    • 1
    • 2
    • 3
  • E. Morava
    • 3
    • 4
  • G. A. Gole
    • 3
    • 5
  • D. Coman
    • 3
    • 6
  • J. Jaeken
    • 3
    • 4
  • Vanessa dos Reis Ferreira
    • 2
    • 3
    Email author
  1. 1.UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e TecnologiaUniversidade NOVA de LisboaLisbonPortugal
  2. 2.Portuguese Association for CDGLisbonPortugal
  3. 3.CDG & Allies – Professionals and Patient Associations International Network (CDG & Allies – PPAIN)LisbonPortugal
  4. 4.Center for Metabolic DiseaseKU LeuvenLeuvenBelgium
  5. 5.Discipline of Paediatrics and Child HealthUniversity of Queensland, Queensland Children’s HospitalBrisbaneAustralia
  6. 6.Department of Metabolic MedicineThe Lady Cilento Children’s HospitalBrisbaneAustralia

Personalised recommendations