Skip to main content
Log in

AMP-activated protein kinase activation in mediating phenylalanine-induced neurotoxicity in experimental models of phenylketonuria

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Phenylketonuria (PKU), one of the most prevalent autosomal recessive disorders of amino acid metabolism, is characterized by abnormal accumulation of phenylalanine, which can lead to intellectual disability. The main pathologic changes in the central nervous system of untreated phenylketonuric patients are reductions in the number of axons, dendrites, and synapses in the brain. Such alterations are thought to be mainly associated with the toxic effects caused by phenylalanine. However, the underlying molecular mechanisms have not been fully elucidated. The present study shows that a high concentration of phenylalanine remarkably inhibited neuronal neurite formation in vitro. Interestingly, AMP-activated protein kinase (AMPK), the energy status sensor, was activated in cultured cerebral cortical neurons upon phenylalanine treatment. Pretreatment with an AMPK inhibitor ameliorated the reduction of neurite formation caused by phenylalanine. In addition, the levels of the phosphorylated AMPK, the active form of AMPK, were significantly higher in the cerebral cortices of PKU mice with elevated phenylalanine levels in this brain region compared to those in wild-type control mice, whereas the density of dendritic spines on basal secondary dendrites of pyramidal neurons in prefrontal cortices of PKU mice was significantly decreased. Collectively, these findings indicate that AMPK activation is a key event in impaired neuronal dendritic development in PKU and consequently, a potential therapeutic target for developing neuroprotective strategies against phenylalanine-evoked brain injury in PKU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andolina D, Conversi D, Cabib S et al (2011) 5-Hydroxytryptophan during critical postnatal period improves cognitive performances and promotes dendritic spine maturation in genetic mouse model of phenylketonuria. Int J Neuropsychopharmacol 14:479–489

    Article  PubMed  CAS  Google Scholar 

  • Brown RE, Wilkinson PM, Imran SA et al (2009) Resistin differentially modulates neuropeptide gene expression and AMP-activated protein kinase activity in N-1 hypothalamic neurons. Brain Res 1294:52–60

    Article  PubMed  CAS  Google Scholar 

  • Cai Y, Weng K, Guo Y et al (2015) An integrated targeted metabolomic platform for high-throughput metabolite profiling and automated data processing. Metabolomics 11:1575–1586

    Article  CAS  Google Scholar 

  • Cantó C, Auwerx J (2011) Calorie restriction: is AMPK a key sensor and effector? Physiology 26:214–224

    Article  PubMed  CAS  Google Scholar 

  • Ercal N, Aykin-Burns N, Gurer-Orhan H et al (2002) Oxidative stress in a phenylketonuria animal model. Free Radic Biol Med 32:906–911

    Article  PubMed  CAS  Google Scholar 

  • Gowans GJ, Hardie DG (2014) AMPK: a cellular energy sensor primarily regulated by AMP. Biochem Soc Trans 42:71–75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8:774–785

    Article  PubMed  CAS  Google Scholar 

  • Hartwig C, Gal A, Santer R et al (2006) Elevated phenylalanine levels interfere with neurite outgrowth stimulated by the neuronal cell adhesion molecule L1 in vitro. FEBS Lett 580:3489–3492

    Article  PubMed  CAS  Google Scholar 

  • Hörster F, Schwab MA, Sauer SW et al (2006) Phenylalanine reduces synaptic density in mixed cortical cultures from mice. Pediatr Res 59:544–548

    Article  PubMed  CAS  Google Scholar 

  • Huttenlocher PR (2000) The neuropathology of phenylketonuria: human and animal studies. Eur J Pediatr 159(Suppl 2):S102–S106

    Article  PubMed  Google Scholar 

  • Ito D, Tamate H, Nagayama M et al (2010) Minimum neuron density for synchronized bursts in a rat cortical culture on multi-electrode arrays. Neuroscience 171:50–61

    Article  PubMed  CAS  Google Scholar 

  • Ju TC, Chen HM, Chen YC et al (2014) AMPK-α1 functions downstream of oxidative stress to mediate neuronal atrophy in Huntington’s disease. Biochim Biophys Acta 1842:1668–1680

    Article  PubMed  CAS  Google Scholar 

  • Lee ES, Uhm KO, Lee YM et al (2008) Oxytocin stimulates glucose uptake in skeletal muscle cells through the calcium-CaMKK-AMPK pathway. Regul Pept 151:71–74

    Article  PubMed  CAS  Google Scholar 

  • Lee KY, Kim JR, Choi HC (2016) Genistein-induced LKB1-AMPK activation inhibits senescence of VSMC through autophagy induction. Vasc Pharmacol 81:75–82

    Article  CAS  Google Scholar 

  • Li D, Gu X, Lu L et al (2010) Effects of phenylalanine on the survival and neurite outgrowth of rat cortical neurons in primary cultures: possible involvement of brain-derived neurotrophic factor. Mol Cell Biochem 339:1–7

    Article  PubMed  CAS  Google Scholar 

  • Lu L, Gu X, Li D et al (2011) Mechanisms regulating superoxide generation in experimental models of phenylketonuria: an essential role of NADPH oxidase. Mol Genet Metab 104:241–248

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Cao Y, Cheng K et al (2015) Berberine regulates neurite outgrowth through AMPK-dependent pathways by lowering energy status. Exp Cell Res 334:194–206

    Article  PubMed  CAS  Google Scholar 

  • Mairet-Coello G, Courchet J, Pieraut S et al (2013) The CAMKK2-AMPK kinase pathway mediates the synaptotoxic effects of Aβ oligomers through tau phosphorylation. Neuron 78:94–108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marin JJ, Lozano E, Perez MJ (2016) Lack of mitochondrial DNA impairs chemical hypoxia-induced autophagy in liver tumor cells through ROS-AMPK-ULK1 signaling dysregulation independently of HIF-1α. Free Radic Biol Med 101:71–84

    Article  PubMed  CAS  Google Scholar 

  • Moraes TB, Zanin F, da Rosa A et al (2010) Lipoic acid prevents oxidative stress in vitro and in vivo by an acute hyperphenylalaninemia chemically-induced in rat brain. J Neurol Sci 292:89–95

    Article  PubMed  CAS  Google Scholar 

  • Oruganty-Das A, Ng T, Udagawa T et al (2012) Translational control of mitochondrial energy production mediates neuron morphogenesis. Cell Metab 16:789–800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pietz J, Rupp A, Ebinger F et al (2003) Cerebral energy metabolism in phenylketonuria: findings by quantitative in vivo 31P MR spectroscopy. Pediatr Res 53:654–662

    Article  PubMed  Google Scholar 

  • Rajamohan F, Reyes AR, Frisbie RK et al (2016) Probing the enzyme kinetics, allosteric modulation and activation of α1- and α2-subunit-containing AMP-activated protein kinase (AMPK) heterotrimeric complexes by pharmacological and physiological activators. Biochem J 473:581–592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramamurthy S, Chang E, Cao Y et al (2014) AMPK activation regulates neuronal structure in developing hippocampal neurons. Neuroscience 259:13–24

    Article  PubMed  CAS  Google Scholar 

  • Reddy PH (2011) Abnormal tau, mitochondrial dysfunction, impaired axonal transport of mitochondria, and synaptic deprivation in Alzheimer’s disease. Brain Res 1415:136–148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanayama Y, Nagasaka H, Takayanagi M et al (2011) Experimental evidence that phenylalanine is strongly associated to oxidative stress in adolescents and adults with phenylketonuria. Mol Genet Metab 103:220–225

    Article  PubMed  CAS  Google Scholar 

  • Sarre A, Gabrielli J, Vial G et al (2012) Reactive oxygen species are produced at low glucose and contribute to the activation of AMPK in insulin-secreting cells. Free Radic Biol Med 52:142–150

    Article  PubMed  CAS  Google Scholar 

  • Schlegel G, Scholz R, Ullrich K et al (2016) Phenylketonuria: direct and indirect effects of phenylalanine. Exp Neurol 281:28–36

    Article  PubMed  CAS  Google Scholar 

  • Seixas da Silva GS, Melo HM, Lourenco MV et al (2017) Amyloid-β oligomers transiently inhibit AMP-activated kinase and cause metabolic defects in hippocampal neurons. J Biol Chem 292:7395–7406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Susick LL, Lowing JL, Provenzano AM et al (2014) Postnatal ethanol exposure simplifies the dendritic morphology of medium spiny neurons independently of adenylyl cyclase 1 and 8 activity in mice. Alcohol Clin Exp Res 38:1339–1346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vogel KR, Arning E, Bottiglieri T et al (2017) Multicompartment analysis of protein-restricted phenylketonuric mice reveals amino acid imbalances in brain. J Inherit Metab Dis 40:227–235

    Article  PubMed  CAS  Google Scholar 

  • Wakita S, Izumi Y, Nakai T et al (2014) Staurosporine induces dopaminergic neurite outgrowth through AMP-activated protein kinase/mammalian target of rapamycin signaling pathway. Neuropharmacology 77:39–48

    Article  PubMed  CAS  Google Scholar 

  • Xu SY, Wu YM, Ji Z et al (2012) A modified technique for culturing primary fetal rat cortical neurons. J Biomed Biotechnol 2012:803930

    PubMed  PubMed Central  Google Scholar 

  • Xu Y, Liu C, Chen S et al (2014) Activation of AMPK and inactivation of Akt result in suppression of mTOR-mediated S6K1 and 4E-BP1 pathways leading to neuronal cell death in in vitro models of Parkinson’s disease. Cell Signal 26:1680–1689

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Junhao Hu for providing critical suggestions.

Funding

This work was funded by the grant from the National Natural Science Foundation of China (No. 81300708).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Zhang.

Ethics declarations

Conflict of interest

L. Lu, X. Ben, L. Xiao, M. Peng, and Y. Zhang declare that they have no conflict of interest.

Animal rights

All institutional and national guidelines for the care and use of laboratory animals were followed. This article does not contain any studies with human subjects performed by any of the authors.

Additional information

Communicated by: John Christodoulou

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Ben, X., Xiao, L. et al. AMP-activated protein kinase activation in mediating phenylalanine-induced neurotoxicity in experimental models of phenylketonuria. J Inherit Metab Dis 41, 679–687 (2018). https://doi.org/10.1007/s10545-017-0115-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-017-0115-6

Navigation