Advertisement

Journal of Inherited Metabolic Disease

, Volume 39, Issue 6, pp 765–780 | Cite as

Immunological aspects of congenital disorders of glycosylation (CDG): a review

  • Maria Monticelli
  • Tiago Ferro
  • Jaak Jaeken
  • Vanessa dos Reis FerreiraEmail author
  • Paula A. VideiraEmail author
Review

Abstract

Congenital disorders of glycosylation (CDG) are a rapidly growing family of genetic diseases comprising more than 85 known distinct disorders. They show a great phenotypic variability ranging from multi-organ/system to mono-organ/system involvement with very mild to extremely severe expression. Immunological dysfunction has a significant impact on the phenotype in a minority of CDG. CDG with major immunological involvement are ALG12-CDG, MAGT1-CDG, MOGS-CDG, SLC35C1-CDG and PGM3-CDG. This review discusses the variety of immunological abnormalities reported in human CDG. Understanding the immunological aspects of CDG may contribute to a better management/treatment of these pathologies and possibly of more common diseases, such as inflammatory diseases.

Keywords

Sialic Acid GlcNAc Galactosemia Chronic Recurrent Multifocal Osteomyelitis Leukocyte Adhesion Deficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

Asn

Asparagine

CDG

Congenital disorder(s) of glycosylation

CD

Cluster of differentiation

EBV

Epstein-Barr virus

ER

Endoplasmic reticulum

GalNAc

N-acetylgalactosamine

GDP

Guanosine diphosphate

GlcNAc

N-acetylglucosamine

Glu

Glucose

GPI

Glycosylphosphatidylinositol

HSCT

Hematopoietic stem cell transplantation

IEF

Isoelectric focusing

IFN-γ

Interferon-gamma

IL-

Interleukin

Man

Mannose

NK

Natural killer

NKG2D

Natural killer activating receptor group 2, member D

sLex

Sialyl-Lewis X

OST

Oligosaccharyltransferase

TCR

T cell receptor

Thr

Threonine

TLR

Toll like receptor

UDP

Uridine diphosphate

XMEN

X-linked immunodeficiency with magnesium defect and EBV infection and neoplasia

Notes

Acknowledgments

This work was supported by the CDG-Professionals and Patients Association International Network (CDG- PPAIN) and Liliana Fellowship awarded to M. Monticelli. T. Ferro acknowledges Fundação para a Ciência e Tecnologia for the grant PD/BD/52472/2014 awarded to him.

Compliance with ethics guidelines

Conflict of interests

Vanessa dos Reis Ferreira is President and founder of the Portuguese Association for CDG and other Rare Metabolic Diseases (APCDG-DMR). All other authors declare no competing financial interests.

References

  1. Al-Essa M, Dhaunsi GS, Al-Qabandi W, Khan I (2013) Impaired NADPH oxidase activity in peripheral blood lymphocytes of galactosemia patients. Exp Biol Med 238:779–786CrossRefGoogle Scholar
  2. Anthony RM, Ravetch JV (2010) A novel role for the IgG Fc glycan: the anti-inflammatory activity of sialylated IgG Fcs. J Clin Immunol 30(Suppl 1):S9–14PubMedCrossRefGoogle Scholar
  3. Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473:4–8PubMedCrossRefGoogle Scholar
  4. Arnoux JB, Boddaert N, Valayannopoulos V et al (2008) Risk assessment of acute vascular events in congenital disorder of glycosylation type Ia. Mol Genet Metab 93:444–449Google Scholar
  5. Barral DC, Brenner MB (2007) CD1 antigen presentation: how it works. Nat Rev Immunol 7:929–941PubMedCrossRefGoogle Scholar
  6. Baum LG, Crocker PR (2009) Glycoimmunology: ignore at your peril! Immunol Rev 230:5–8PubMedCrossRefGoogle Scholar
  7. Bergmann M, Gross HJ, Abdelatty F, Möller P, Jaeken J, Schwartz-Albiez R (1998) Abnormal surface expression of sialoglycans on B lymphocyte cell lines from patients with carbohydrate deficient glycoprotein syndrome I A (CDGS I A). Glycobiology 8:963–972PubMedCrossRefGoogle Scholar
  8. Berry GT (1993) Classic galactosemia and clinical variant galactosemia. In Pagon RA, Adam MP, Ardinger HH et al (Eds.) GeneReviews, SeattleGoogle Scholar
  9. Berry G (2000) Classic galactosemia and clinical variant galactosemia. GeneReviews, SeattleGoogle Scholar
  10. Björklund JE, Stibler H, Kristiansson B, Johansson SG, Magnusson CG (1997) Immunoglobulin levels in patients with carbohydrate-deficient glycoprotein syndrome type I. Int Arch Allergy Immunol 114:116–119PubMedCrossRefGoogle Scholar
  11. Blank C, Smith LA, Hammer DA (2006) Recurrent infections and immunological dysfunction in congenital disorder of glycosylation Ia (CDG Ia). J Inherit Metab Dis 29:592PubMedCrossRefGoogle Scholar
  12. Bosch AM (2006) Classical galactosaemia revisited. J Inherit Metab Dis 29:516–525PubMedCrossRefGoogle Scholar
  13. Buerki SE, Grandgirard D, Datta AN et al (2016) Inflammatory markers in pediatric stroke: an attempt to better understanding the pathophysiology. Eur J Paediatr Neurol 20:252–60PubMedCrossRefGoogle Scholar
  14. Butler M, Quelhas D, Critchley AJ et al (2003) Detailed glycan analysis of serum glycoproteins of patients with congenital disorders of glycosylation indicates the specific defective glycan processing step and provides an insight into pathogenesis. Glycobiology 13:601–622PubMedCrossRefGoogle Scholar
  15. Carlow DA, Gossens K, Naus S, Veerman KM, Seo W, Ziltener HJ (2009) PSGL-1 function in immunity and steady state homeostasis. Immunol Rev 230:75–96PubMedCrossRefGoogle Scholar
  16. Chang J, Block TM, Guo JT (2015) Viral resistance of MOGS-CDG patients implies a broad-spectrum strategy against acute virus infections. Antivir Ther 20:257–259PubMedCrossRefGoogle Scholar
  17. Chantret I, Dupré T, Delenda C et al (2002) Congenital disorders of glycosylation type Ig is defined by a deficiency in dolichyl-P-mannose:Man7GlcNAc2-PP-dolichyl mannosyltransferase. J Biol Chem 277:25815–25822PubMedCrossRefGoogle Scholar
  18. Coman D, Irving M, Kannu P, Jaeken J, Savarirayan R (2008) The skeletal manifestations of the congenital disorders of glycosylation. Clin Genet 73:507–515PubMedCrossRefGoogle Scholar
  19. Coss KP, Hawkes CP, Adamczyk B et al (2014) N-glycan abnormalities in children with galactosemia. J Proteome Res 13:385–94PubMedCrossRefGoogle Scholar
  20. Crespo HJ, Lau JT, Videira PA (2013) Dendritic cells: a spot on sialic acid. Front Immunol 4:491PubMedPubMedCentralCrossRefGoogle Scholar
  21. Dauber A, Ercan A, Lee J et al (2014) Congenital disorder of fucosylation type 2c (LADII) presenting with short stature and developmental delay with minimal adhesion defect. Hum Mol Genet 23:2880–2887PubMedPubMedCentralCrossRefGoogle Scholar
  22. de Cock P, Jaeken J (2009) MGAT2 deficiency (CDG-IIa): the life of J. Biochim Biophys Acta 1792:844–846PubMedCrossRefGoogle Scholar
  23. De Graaf TW, Van der Stelt ME, Anbergen MG, van Dijk W (1993) Inflammation-induced expression of sialyl Lewis X-containing glycan structures on alpha 1-acid glycoprotein (orosomucoid) in human sera. J Exp Med 177:657–666PubMedCrossRefGoogle Scholar
  24. de la Morena-Barrio ME, Hernández-Caselles T, Corral J et al (2013) GPI-anchor and GPI-anchored protein expression in PMM2-CDG patients. Orphanet J Rare Dis 8:170PubMedPubMedCentralCrossRefGoogle Scholar
  25. de Lonlay P, Seta N, Barrot S et al (2001) A broad spectrum of clinical presentations in congenital disorders of glycosylation I: a series of 26 cases. J Med Genet 38:14–19PubMedPubMedCentralCrossRefGoogle Scholar
  26. De Praeter CM, Gerwig GJ, Bause E et al (2000) A novel disorder caused by defective biosynthesis of N-linked oligosaccharides due to glucosidase I deficiency. Am J Hum Genet 66:1744–1756PubMedPubMedCentralCrossRefGoogle Scholar
  27. Demellawy DE, Chang N, de Nanassy J, Nasr A (2015) GALNT3 gene mutation-associated chronic recurrent multifocal osteomyelitis and familial hyperphosphatemic familial tumoral calcinosis. Scand J Rheumatol 44:170–172PubMedCrossRefGoogle Scholar
  28. Dhalla F, Murray S, Sadler R et al (2015) Identification of a novel mutation in MAGT1 and progressive multifocal leucoencephalopathy in a 58-year-old man with XMEN disease. J Clin Immunol 35:112–118Google Scholar
  29. Di Rocco M, Hennet T, Grubenmann CE et al (2005) Congenital disorder of glycosylation (CDG) Ig: report on a patient and review of the literature. J Inherit Metab Dis 28:1162–1164PubMedCrossRefGoogle Scholar
  30. Dupré T, Barnier A, de Lonlay P et al (2000) Defect in N-glycosylation of proteins is tissue-dependent in congenital disorders of glycosylation Ia. Glycobiology 10:1277–1281PubMedCrossRefGoogle Scholar
  31. Eklund EA, Newell JW, Sun L et al (2005) Molecular and clinical description of the first US patients with congenital disorder of glycosylation Ig. Mol Genet Metab 84:25–31PubMedCrossRefGoogle Scholar
  32. Etzioni A, Tonetti M (2000) Fucose supplementation in leukocyte adhesion deficiency type II. Blood 95:3641–3643PubMedGoogle Scholar
  33. Etzioni A, Frydman M, Pollack S et al (1992) Brief report: recurrent severe infections caused by a novel leukocyte adhesion deficiency. N Engl J Med 327:1789–1792PubMedCrossRefGoogle Scholar
  34. Freeze H, Schachter H et al (2009) Genetic disorders of glycosylation. In: Varki A, Cummings R, Esko J (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  35. Frydman M, Etzioni A, Eidlitz-Markus T et al (1992) Rambam-Hasharon syndrome of psychomotor retardation, short stature, defective neutrophil motility, and Bombay phenotype. Am J Med Genet 44:297–302PubMedCrossRefGoogle Scholar
  36. Goreta SS, Dabelic S, Dumic J (2012) Insights into complexity of congenital disorders of glycosylation. Biochem Med 22:156–170CrossRefGoogle Scholar
  37. Grubenmann CE, Frank CG, Kjaergaard S, Berger EG, Aebi M, Hennet T (2002) ALG12 mannosyltransferase defect in congenital disorder of glycosylation type lg. Hum Mol Genet 11:2331–2339PubMedCrossRefGoogle Scholar
  38. Grubenmann CE, Frank CG, Hülsmeier AJ et al (2004) Deficiency of the first mannosylation step in the N-glycosylation pathway causes congenital disorder of glycosylation type Ik. Hum Mol Genet 13:535–542PubMedCrossRefGoogle Scholar
  39. Grunewald S (2009) The clinical spectrum of phosphomannomutase 2 deficiency (CDG-Ia). Biochim Biophys Acta 1792:827–834PubMedCrossRefGoogle Scholar
  40. Gustot T, Durand F, Lebrec D, Vincent JL, Moreau R (2009) Severe sepsis in cirrhosis. Hepatology 50:2022–33PubMedCrossRefGoogle Scholar
  41. Hayes JM, Cosgrave EF, Struwe WB et al (2014) Glycosylation and Fc receptors. Curr Top Microbiol Immunol 382:165–99PubMedGoogle Scholar
  42. He P, Srikrishna G, Freeze HH (2014) N-glycosylation deficiency reduces ICAM-1 induction and impairs inflammatory response. Glycobiology 24:392–398PubMedPubMedCentralCrossRefGoogle Scholar
  43. Helmus Y, Denecke J, Yakubenia S et al (2006) Leukocyte adhesion deficiency II patients with a dual defect of the GDP-fucose transporter. Blood 107:3959–3966Google Scholar
  44. Heyne K, Mayatepek E, Walther F, Weidinger S, Pahl HL (1998) Pericardial effusion in glycanosis CDG type I (MIM 212 065): an inflammatory endoplasmic reticulum overload response? Eur J Pediatr 157:168–169PubMedGoogle Scholar
  45. Hidalgo A, Ma S, Peired AJ, Weiss LA, Cunningham-Rundles C, Frenette PS (2003) Insights into leukocyte adhesion deficiency type 2 from a novel mutation in the GDP-fucose transporter gene. Blood 101:1705–1712PubMedCrossRefGoogle Scholar
  46. Huybrechts S, De Laet C, Bontems P et al (2012) Deficiency of subunit 6 of the conserved oligomeric golgi complex (COG6-CDG): second patient, different phenotype. JIMD Rep 4:103–108PubMedCrossRefGoogle Scholar
  47. Ilkovski B, Pagnamenta AT, O’Grady GL et al (2015) Mutations in PIGY: expanding the phenotype of inherited glycosylphosphatidylinositol deficiencies. Hum Mol Genet 24:6146–6159PubMedPubMedCentralCrossRefGoogle Scholar
  48. Imtiaz F, Worthington V, Champion M et al (2000) Genotypes and phenotypes of patients in the UK with carbohydrate-deficient glycoprotein syndrome type I. J Inherit Metab Dis 23:162–174PubMedCrossRefGoogle Scholar
  49. Jaeken J (2012) MGAT2-CDG (CDG-IIa) and dysmorphism. Am J Med Genet 158A:2974–2975PubMedCrossRefGoogle Scholar
  50. Jaeken J, Vanderschueren-Lodeweyckx M, Casaer P, Snoeck L, Corbeel L, Eggermont E, Eeckels R (1980) Familial psychomotor retardation with markedly fluctuating serum prolactin, FSH and GH levels, partial TBG-deficiency, increased serum arylsulphatase A and increased CSF protein: a new syndrome? Pediatr Res 14:179CrossRefGoogle Scholar
  51. Jaeken J, De Cock P, Stibler H et al (1993) Carbohydrate-deficient glycoprotein syndrome type II. J Inherit Metab Dis 16:1041PubMedCrossRefGoogle Scholar
  52. Jaeken J, Schachter H, Carchon H, De Cock P, Coddeville B, Spik G (1994) Carbohydrate deficient glycoprotein syndrome type II: a deficiency in Golgi localised N-acetyl-glucosaminyltransferase II. Arch Dis Child 71:123–127PubMedPubMedCentralCrossRefGoogle Scholar
  53. Jaeken J, Matthijs G, Barone R, Carchon H (1997) Carbohydrate deficient glycoprotein (CDG) syndrome type I. J Med Genet 34:73–76PubMedPubMedCentralCrossRefGoogle Scholar
  54. Jaeken J, Hennet T, Matthijs G, Freeze HH (2009) CDG nomenclature: time for a change! Biochim Biophys Acta 1792:825–826PubMedPubMedCentralCrossRefGoogle Scholar
  55. Jamieson JC, McCaffrey G, Harder PG (1993) Sialyltransferase: a novel acute-phase reactant. Comp Biochem Physiol B 105:29–33PubMedCrossRefGoogle Scholar
  56. Jensen T, Galli-Stampino L, Mouritsen S et al (1996) T cell recognition of Tn-glycosylated peptide antigens. Eur J Immunol 26:1342–9PubMedCrossRefGoogle Scholar
  57. Kapusta L, Zucker N, Frenckel G et al (2013) From discrete dilated cardiomyopathy to successful cardiac transplantation in congenital disorders of glycosylation due to dolichol kinase deficiency (DK1-CDG). Heart Fail Rev 18:187–196PubMedCrossRefGoogle Scholar
  58. Kjaergaard S, Schwartz M, Skovby F (2001) Congenital disorder of glycosylation type Ia (CDG-Ia): phenotypic spectrum of the R141H/F119L genotype. Arch Dis Child 85:236–239PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kobayashi RH, Kettelhut BV, Kobayashi AL (1983) Galactose inhibition of neonatal neutrophil function. Pediatr Infect Dis 2:442–445PubMedCrossRefGoogle Scholar
  60. Kranz C, Denecke J, Lehle L et al (2004) Congenital disorder of glycosylation type Ik (CDG-Ik): a defect of mannosyltransferase I. Am J Hum Genet 74:545–551PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kranz C, Basinger AA, Güçsavaş-Calikoğlu M et al (2007a) Expanding spectrum of congenital disorder of glycosylation Ig (CDG-Ig): sibs with a unique skeletal dysplasia, hypogammaglobulinemia, cardiomyopathy, genital malformations, and early lethality. Am J Med Genet A 143A:1371–1378PubMedCrossRefGoogle Scholar
  62. Kranz C, Jungeblut C, Denecke J et al (2007b) A defect in dolichol phosphate biosynthesis causes a new inherited disorder with death in early infancy. Am J Hum Genet 80:433–440PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kundak AA, Zenciroğlu A, Yaralı N et al (2012) An unusual presentation of galactosemia: hemophagocytic lymphohistiocytosis. Turk J Haematol 29:401–404PubMedPubMedCentralCrossRefGoogle Scholar
  64. Li FY, Chaigne-Delalande B, Kanellopoulou C et al (2011) Signaling role for Mg(2+) revealed by immunodeficiency due to loss of MagT1. Nature 475:471–476PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lieu MT, Ng BG, Rush JS et al (2013) Severe, fatal multisystem manifestations in a patient with dolichol kinase-congenital disorder of glycosylation. Mol Genet Metab 110:484–489PubMedPubMedCentralCrossRefGoogle Scholar
  66. Litchfield WJ, Wells WW (1978) Effect of galactose on free radical reactions of polymorphonuclear leukocytes. Arch Biochem Biophys 188:26–30PubMedCrossRefGoogle Scholar
  67. Lübbehusen J, Thiel C, Rind N et al (2010) Fatal outcome due to deficiency of subunit 6 of the conserved oligomeric Golgi complex leading to a new type of congenital disorders of glycosylation. Hum Mol Genet 19:3623–3633PubMedCrossRefGoogle Scholar
  68. Lübke T, Marquardt T, von Figura K, Körner C (1999) A new type of carbohydrate-deficient glycoprotein syndrome due to a decreased import of GDP-fucose into the golgi. J Biol Chem 274:25986–25989PubMedCrossRefGoogle Scholar
  69. Lühn K, Marquardt T, Harms E, Vestweber D (2001) Discontinuation of fucose therapy in LADII causes rapid loss of selectin ligands and rise of leukocyte counts. Blood 97:330–332PubMedCrossRefGoogle Scholar
  70. Lundin KE, Hamasy A, Backe PH et al (2015) Susceptibility to infections, without concomitant hyper-IgE, reported in 1976, is caused by hypomorphic mutation in the phosphoglucomutase 3 (PGM3) gene. Clin Immunol 161:366–372PubMedPubMedCentralCrossRefGoogle Scholar
  71. Lyons JJ, Milner JD, Rosenzweig SD (2015) Glycans instructing immunity: the emerging role of altered glycosylation in clinical immunology. Front Pediatr 3:54PubMedPubMedCentralCrossRefGoogle Scholar
  72. Maratha A, Stockmann H, Coss KP et al (2016) Classical galactosemia: novel insights in IgG N-glycosylation and N-glycan biosynthesis. Eur J Hum Genet doi: 10.1038/ejhg.2015.254Google Scholar
  73. Marquardt T, Brune T, Lühn K et al (1999a) Leukocyte adhesion deficiency II syndrome, a generalized defect in fucose metabolism. J Pediatr 134:681–688PubMedCrossRefGoogle Scholar
  74. Marquardt T, Lühn K, Srikrishna G, Freeze HH, Harms E, Vestweber D (1999b) Correction of leukocyte adhesion deficiency type II with oral fucose. Blood 94:3976–3985PubMedGoogle Scholar
  75. Matthijs G, Schollen E, Pardon E et al (1997) Mutations in PMM2, a phosphomannomutase gene on chromosome 16p13, in carbohydrate-deficient glycoprotein type I syndrome (Jaeken syndrome). Nat Genet 16:88–92PubMedCrossRefGoogle Scholar
  76. Metzker A, Eisenstein B, Oren J, Samuel R (1988) Tumoral calcinosis revisited—common and uncommon features. Report of ten cases and review. Eur J Pediatr 147:128–132PubMedCrossRefGoogle Scholar
  77. Molinari F, Foulquier F, Tarpey PS et al (2008) Oligosaccharyltransferase-subunit mutations in nonsyndromic mental retardation. Am J Hum Genet 82:1150–1157PubMedPubMedCentralCrossRefGoogle Scholar
  78. Monin ML, Mignot C, De Lonlay P et al (2014) 29 French adult patients with PMM2-congenital disorder of glycosylation: outcome of the classical pediatric phenotype and depiction of a late-onset phenotype. Orphanet J Rare Dis 9:207PubMedPubMedCentralCrossRefGoogle Scholar
  79. Morava E, Vodopiutz J, Lefeber DJ et al (2012) Defining the phenotype in congenital disorder of glycosylation due to ALG1 mutations. Pediatrics 130:e1034–1039PubMedCrossRefGoogle Scholar
  80. Moremen KW, Trimble RB, Herscovics A (1994) Glycosidases of the asparagine-linked oligosaccharide processing pathway. Glycobiology 4:113–125PubMedCrossRefGoogle Scholar
  81. Murali C, Lu JT, Jain M et al (2014) Diagnosis of ALG12-CDG by exome sequencing in a case of severe skeletal dysplasia. Mol Genet Metab Rep 1:213–219PubMedPubMedCentralCrossRefGoogle Scholar
  82. Nasirikenari M, Segal BH, Ostberg JR, Urbasic A, Lau JT (2006) Altered granulopoietic profile and exaggerated acute neutrophilic inflammation in mice with targeted deficiency in the sialyltransferase ST6Gal I. Blood 108:3397–3405PubMedPubMedCentralCrossRefGoogle Scholar
  83. Noelle V, Knuepfer M, Pulzer F et al (2005) Unusual presentation of congenital disorder of glycosylation type 1a: congenital persistent thrombocytopenia, hypertrophic cardiomyopathy and hydrops-like aspect due to marked peripheral oedema. Eur J Pediatr 164:223–226PubMedCrossRefGoogle Scholar
  84. Ong BB, Gole GA, Robertson T, McGill J, de Lore D, Crawford M (2009) Retinal hemorrhages associated with meningitis in a child with a congenital disorder of glycosylation. Forensic Sci Med Pathol 5:307–312PubMedCrossRefGoogle Scholar
  85. Pérez-Dueñas B, García-Cazorla A, Pineda M et al (2009) Long-term evolution of eight Spanish patients with CDG type Ia: typical and atypical manifestations. Eur J Paediatr Neurol 13:444–451PubMedCrossRefGoogle Scholar
  86. Piton A, Redin C, Mandel JL (2013) XLID-causing mutations and associated genes challenged in light of data from large-scale human exome sequencing. Am J Hum Genet 93:368–383PubMedPubMedCentralCrossRefGoogle Scholar
  87. Pokrovskaya ID, Willett R, Smith RD, Morelle W, Kudlyk T, Lupashin VV (2011) Conserved oligomeric Golgi complex specifically regulates the maintenance of Golgi glycosylation machinery. Glycobiology 21:1554–1569PubMedPubMedCentralCrossRefGoogle Scholar
  88. Priatel JJ, Chui D, Hiraoka N et al (2000) The ST3Gal-I sialyltransferase controls CD8+ T lymphocyte homeostasis by modulating O-glycan biosynthesis. Immunity 12:273–283PubMedCrossRefGoogle Scholar
  89. Ramaekers VT, Stibler H, Kint J, Jaeken J (1991) A new variant of the carbohydrate deficient glycoproteins syndrome. J Inherit Metab Dis 14:385–388PubMedCrossRefGoogle Scholar
  90. Richard E, Vega AI, Pérez B et al (2009) Congenital disorder of glycosylation Ia: new differentially expressed proteins identified by 2-DE. Biochem Biophys Res Commun 379:267–271PubMedCrossRefGoogle Scholar
  91. Rohlfing AK, Rust S, Reunert J et al (2014) ALG1-CDG: a new case with early fatal outcome. Gene 534:345–351PubMedCrossRefGoogle Scholar
  92. Rymen D, Jaeken J (2014) Skin manifestations in CDG. J Inherit Metab Dis 37:699–708PubMedCrossRefGoogle Scholar
  93. Rymen D, Peanne R, Millón MB et al (2013) MAN1B1 deficiency: an unexpected CDG-II. PLoS Genet 9:e1003989PubMedPubMedCentralCrossRefGoogle Scholar
  94. Rymen D, Winter J, Van Hasselt PM et al (2015) Key features and clinical variability of COG6-CDG. Mol Genet Metab 116:163–170PubMedCrossRefGoogle Scholar
  95. Sadat MA, Moir S, Chun TW et al (2014) Glycosylation, hypogammaglobulinemia, and resistance to viral infections. N Engl J Med 370:1615–1625PubMedPubMedCentralCrossRefGoogle Scholar
  96. Saldova R, Stöckmann H, O’Flaherty R, Lefeber DJ, Jaeken J, Rudd PM (2015) N-glycosylation of serum IgG and total glycoproteins in MAN1B1 deficiency. J Proteome Res 14:4402–4412PubMedCrossRefGoogle Scholar
  97. Sassi A, Lazaroski S, Wu G et al (2014) Hypomorphic homozygous mutations in phosphoglucomutase 3 (PGM3) impair immunity and increase serum IgE levels. J Allergy Clin Immunol 133:1410–1419PubMedPubMedCentralCrossRefGoogle Scholar
  98. Scott K, Gadomski T, Kozicz T, Morava E (2014) Congenital disorders of glycosylation: new defects and still counting. J Inherit Metab Dis 37:609–617PubMedPubMedCentralCrossRefGoogle Scholar
  99. Serrano M, de Diego V, Muchart J et al (2015) Phosphomannomutase deficiency (PMM2-CDG): ataxia and cerebellar assessment. Orphanet J Rare Dis 10:138PubMedPubMedCentralCrossRefGoogle Scholar
  100. Shaheen R, Ansari S, Alshammari MJ et al (2013) A novel syndrome of hypohidrosis and intellectual disability is linked to COG6 deficiency. J Med Genet 50:431–436PubMedCrossRefGoogle Scholar
  101. Silva Z, Konstantopoulos K, Videira PA (2012) The role of sugars in dendritic cell trafficking. Ann Biomed Eng 40:777–789PubMedCrossRefGoogle Scholar
  102. Sparks SE, Krasnewich DM (2005) Congenital disorders of n-linked glycosylation pathway overview. In: Pagon RA, Adam MP, Ardinger HH et al (Eds.) GeneReviews. Seattle (WA): University of Washington, Seattle. Available from http://www.ncbi.nlm.nih.gov/books/NBK1332/
  103. Sperandio M, Gleissner CA, Ley K (2009) Glycosylation in immune cell trafficking. Immunol Rev 230:97–113PubMedPubMedCentralCrossRefGoogle Scholar
  104. \Stanley P, Guidos CJ (2009) Regulation of Notch signaling during T- and B-cell development by O-fucose glycans. Immunol Rev 230:201–15PubMedCrossRefGoogle Scholar
  105. Stanley P, Schachter H, Taniguchi N et al (2009) N-Glycans. In: Varki A, Cummings R, Esko J (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  106. Stibler H, Blennow G, Kristiansson B, Lindehammer H, Hagberg B (1994) Carbohydrate-deficient glycoprotein syndrome: clinical expression in adults with a new metabolic disease. J Neurol Neurosurg Psychiatry 57:552–556PubMedPubMedCentralCrossRefGoogle Scholar
  107. Stray-Pedersen A, Backe PH, Sorte HS et al (2014) PGM3 mutations cause a congenital disorder of glycosylation with severe immunodeficiency and skeletal dysplasia. Am J Hum Genet 95:96–107PubMedPubMedCentralCrossRefGoogle Scholar
  108. Strømme P, Maehlen J, Strøm EH, Torvik A (1991) Postmortem findings in two patients with the carbohydrate-deficient glycoprotein syndrome. Acta Paediatr Scand Suppl 375:55–62CrossRefGoogle Scholar
  109. Thiel C, Schwarz M, Hasilik M et al (2002) Deficiency of dolichyl-P-Man:Man7GlcNAc2-PP-dolichyl mannosyltransferase causes congenital disorder of glycosylation type Ig. Biochem J 367(Pt 1):195–201PubMedPubMedCentralCrossRefGoogle Scholar
  110. Truin G, Guillard M, Lefeber DJ et al (2008) Pericardial and abdominal fluid accumulation in congenital disorder of glycosylation type Ia. Mol Genet Metab 94:481–484PubMedCrossRefGoogle Scholar
  111. van de Kamp JM, Lefeber DJ, Ruijter GJ et al (2007) Congenital disorder of glycosylation type Ia presenting with hydrops fetalis. J Med Genet 44:277–280PubMedCrossRefGoogle Scholar
  112. Van Dijk W, Brinkman-Van der Linden ECM, Havenaar EC (1998) Glycosylation of alpha1-acid glycoprotein (orosomucoid) in health and disease: occurrence, regulation and possible functional implications. Trens Glycosci Glycotechnol 10:235–245CrossRefGoogle Scholar
  113. Van Dijk W, Koeleman C, Van het Hof B, Poland D, Jakobs C, Jaeken J (2001) Increased alpha3-fucosylation of alpha(1)-acid glycoprotein in patients with congenital disorder of glycosylation type IA (CDG-Ia). FEBS Lett 494:232–235PubMedCrossRefGoogle Scholar
  114. Van Schaftingen E, Jaeken J (1995) Phosphomannomutase deficiency is a cause of carbohydrate-deficient glycoprotein syndrome type I. FEBS Lett 377:318–320PubMedCrossRefGoogle Scholar
  115. Van Scherpenzeel M, Timal S, Rymen D et al (2014) Diagnostic serum glycosylation profile in patients with intellectual disability as a result of MAN1B1 deficiency. Brain 137:1030–1038PubMedCrossRefGoogle Scholar
  116. Varki A, Gagneux P (2012) Multifarious roles of sialic acids in immunity. Ann N Y Acad Sci 1253:16–36PubMedPubMedCentralCrossRefGoogle Scholar
  117. Verma S, Bharti B, Inusha P (2010) Association of fungal sepsis and galactosemia. Indian J Pediatr 77:695–696PubMedCrossRefGoogle Scholar
  118. Verstegen RH, Theodore M, van de Klerk H, Morava E (2012) Lymphatic edema in congenital disorders of glycosylation. JIMD Rep 4:113–116PubMedCrossRefGoogle Scholar
  119. Videira PA, Amado IF, Crespo HJ et al (2008) Surface alpha 2-3- and alpha 2-6-sialylation of human monocytes and derived dendritic cells and its influence on endocytosis. Glycoconj J 25:259–68PubMedCrossRefGoogle Scholar
  120. Vogt G, Chapgier A, Yang K et al (2005) Gains of glycosylation comprise an unexpectedly large group of pathogenic mutations. Nat Genet 37:692–700PubMedCrossRefGoogle Scholar
  121. Waggoner DD, Buist NR, Donnell GN (1990) Long-term prognosis in galactosaemia: results of a survey of 350 cases. J Inherit Metab Dis 13:802–818PubMedCrossRefGoogle Scholar
  122. Wu G, Hitchen PG, Panico M et al (2015) Glycoproteomic studies of IgE from a novel hyper IgE syndrome linked to PGM3 mutation. Glycoconj J doi: 10.1007/s10719-015-9638-yGoogle Scholar
  123. Zhang Y, Yu X, Ichikawa M et al (2014) Autosomal recessive phosphoglucomutase 3 (PGM3) mutations link glycosylation defects to atopy, immune deficiency, autoimmunity, and neurocognitive impairment. J Allergy Clin Immunol 133:1400–1409PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© SSIEM 2016

Authors and Affiliations

  • Maria Monticelli
    • 1
    • 2
  • Tiago Ferro
    • 1
    • 3
  • Jaak Jaeken
    • 5
    • 6
  • Vanessa dos Reis Ferreira
    • 4
    • 5
    Email author
  • Paula A. Videira
    • 1
    • 3
    • 5
    Email author
  1. 1.Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School / Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisbonPortugal
  2. 2.Dipartimento di BiologiaUniversità degli Studi di Napoli “Federico II”NaplesItaly
  3. 3.UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e TecnologiaUniversidade NOVA de LisboaCaparicaPortugal
  4. 4.Portuguese Association for Congenital Disorders of Glycosylation (CDG)LisbonPortugal
  5. 5.CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN)CaparicaPortugal
  6. 6.Center for Metabolic DiseaseKU LeuvenLeuvenBelgium

Personalised recommendations