Journal of Inherited Metabolic Disease

, Volume 39, Issue 2, pp 203–210 | Cite as

Acute fatal metabolic complications in alkaptonuria

  • A. S. Davison
  • A. M. Milan
  • J. A. Gallagher
  • L. R. Ranganath


Alkaptonuria (AKU) is a rare inherited metabolic disorder of tyrosine metabolism that results from a defect in an enzyme called homogentisate 1,2-dioxygenase. The result of this is that homogentisic acid (HGA) accumulates in the body. HGA is central to the pathophysiology of this disease and the consequences observed; these include spondyloarthropathy, rupture of ligaments/muscle/tendons, valvular heart disease including aortic stenosis and renal stones. While AKU is considered to be a chronic progressive disorder, it is clear from published case reports that fatal acute metabolic complications can also occur. These include oxidative haemolysis and methaemoglobinaemia. The exact mechanisms underlying the latter are not clear, but it is proposed that disordered metabolism within the red blood cell is responsible for favouring a pro-oxidant environment that leads to the life threatening complications observed. Herein the role of red blood cell in maintaining the redox state of the body is reviewed in the context of AKU. In addition previously reported therapeutic strategies are discussed, specifically with respect to why reported treatments had little therapeutic effect. The potential use of nitisinone for the management of patients suffering from the acute metabolic decompensation in AKU is proposed as an alternative strategy.


Chronic Kidney Disease Methylene Blue Acute Kidney Injury G6PD Deficiency Homogentisic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





Homogentisic acid




1,4-benzoquinone-2-acetic acid


Acute kidney injury


Chronic kidney disease


N-acetyl cysteine


Red blood cells




Pentose phosphate pathway


Nicotinamide adenine dinucleotide


Nicotinamide adenine dinucleotide phosphate


Reactive oxygen species


Glucose-6-phosphate dehydrogenase


Compliance with ethical standards

Ethical Standards

All procedures reported in this review were in accordance with the ethical standards of the local Hospital ethics committee and with the Helsinki Declaration of 1975, as revised in 2000.

Informed Consent

Informed consent was obtained from patient(s) wherever included in this review.

Ethical Approval

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Conflict of interest



  1. Abreo K, Abreo F, Zimmerman SW et al (1983) A fifty-year-old man with skin pigmentation, arthritis, chronic renal failure and methemoglobinemia. Am J Med Genet 14:97–114CrossRefPubMedGoogle Scholar
  2. Agarwal R, Vasavada N, Sachs NG et al (2004) Oxidative stress and renal injury with intravenous iron in patients with chronic kidney disease. Kid Inter 65:2279–2289CrossRefGoogle Scholar
  3. Al-Omar MA, Beedham C, Alsarra IA (2004) Pathological roles of reactive oxygen species and their defence mechanisms. Saudi Pharm J 12:1–18Google Scholar
  4. Bataille S, Moal V, Aquaron RR et al (2014) Hemolysis: a fatal complication of alkaptonuria in a severe renal failure patient. Clin Nephrol 81(5):374–376CrossRefGoogle Scholar
  5. Beutler E, Baluda MC (1963) Methemoglobin reduction. Studies of the interaction between cell populations and of the role of methylene blue. Blood 22:323–333PubMedGoogle Scholar
  6. Braconi D, Millucci L, Bernardini G et al (2015) Oxidative stress and mechanisms of ochronosis in alkaptonuria. Free Radic Biol Med. doi: 10.1016/j.freeradbiomed.2015.02.021i PubMedGoogle Scholar
  7. Burak Cimen MY (2008) Free radical metabolism in human erthyrocytes. Clin Chim Acta 390:1–11CrossRefGoogle Scholar
  8. Cappellini MD, Fiorelli G (2008) Glucose-6-phosphate dehydrogenase deficiency. Lancet 371:64–74CrossRefPubMedGoogle Scholar
  9. Ceballos-Picot I, Witko-Sarsat V, Merad-Boudia M et al (1996) Glutathione antioxidant system as a marker of oxidative stress in chronic renal failure. Free Radic Biol Med 21:845–853CrossRefPubMedGoogle Scholar
  10. Davison AS, Milan AM, Hughes AT et al (2015) Serum concentrations and urinary excretion of tyrosine and homogentisic acid in normal subjects. Clin Chem Lab Med 53:e81–e83CrossRefPubMedGoogle Scholar
  11. De Laet C, Munoz VT, Jaeken J, FranÅois B et al (2011) Neuropsychological outcome of NTBC-treated patients with tyrosinaemia type 1. Develop Med Child Neurol 53:962–964CrossRefPubMedGoogle Scholar
  12. Faria B, Vidinha J, Pêgo C et al (2012) Impact of chronic kidney disease on the natural history of alkaptonuria. Clin Kidney J 5:352–355PubMedCentralCrossRefPubMedGoogle Scholar
  13. Hegedus ZL, Nayak U (1994) Homogentesic acid and structurally related compounds as intermediates in plasma soluble melanin formation and soft tissue toxicities. Arch Int Physiol Biochim Biophys 102:175–181PubMedGoogle Scholar
  14. Heng AE, Courbebaisse M, Kemeny JL et al (2010) Hemolysis in a patient with alkaptonuria and chronic kidney failure. Am J Kidney Dis 56:e1–e4CrossRefPubMedGoogle Scholar
  15. Himmelfarb J, McMonagle E, Freedman S et al The PICARD Group (2004) Oxidative stress is increased in critically ill patients with acute renal failure. J Am Soc Nephrol 15:2449–2456Google Scholar
  16. Inagi R, Miyata T (1999) Oxidative protein damage with carbohydrates and lipids in uremia: ‘carbonyl stress’. Blood Purif 17:95–98CrossRefPubMedGoogle Scholar
  17. Introne WJ, Phornphutkul C, Bernardini I et al (2002) Exacerbation of the ochronosis of alkaptonuria due to renal insufficiency and improvement after renal transplantation. Mol Genet Metab 77:136–142CrossRefPubMedGoogle Scholar
  18. Introne WJ, Perry MB, Troendle J et al (2011) A 3-year randomized therapeutic trial of nitisinone in alkaptonuria. Mol Genet Metab 103:307–314PubMedCentralCrossRefPubMedGoogle Scholar
  19. Karkouti K (2012) Transfusion and risk of acute kidney injury in cardiac surgery. Br J Anaesth 109:i29–i38CrossRefPubMedGoogle Scholar
  20. Kazancioglu R, Taylan I, Aksak F et al (2004) Alkaptonuria and renal failure: a case report. J Nephrol 17:441–445PubMedGoogle Scholar
  21. Liu W, Prayson RA (2001) Dura mater involvement in ochronosis (alkaptonuria). Arch Pathol Lab Med 125:961–963PubMedGoogle Scholar
  22. Masella R, Benedetto R, Vary R et al (2005) Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J Nutr Biochem 16:577–586CrossRefPubMedGoogle Scholar
  23. Mayorandan S, Meyer U, Gokcay G et al (2014) Cross-sectional study of 168 patients with hepatorenal tyrosinaemia and implications for clinical practice. Orphanet J Rare Dis 9:107PubMedCentralCrossRefPubMedGoogle Scholar
  24. McKiernan PJ (2013) Nitisinone for the treatment of hereditary tyrosinemia type I. Exp Opin Orphan Drug 1:491–497CrossRefGoogle Scholar
  25. Milch RA (1960) Studies of alcaptonuria: inheritance of 47 cases in eight highly inter-related Dominican kindreds. Am J Hum Genet 12:76–85PubMedCentralPubMedGoogle Scholar
  26. Millucci L, Spreafico A, Tinti L, Braconi D et al (2012) Alkaptonuria is a novel human secondary amyloidogenic disease. Biochim Biophys Acta 1822:1682–1691PubMedCentralCrossRefGoogle Scholar
  27. Millucci L, Braconi D, Bernardini G, Lupetti P et al (2015) Amyloidosis in alkaptonuria. J Inherit Metab Dis 38:797–805CrossRefPubMedGoogle Scholar
  28. Miyasaka C, Ohe C, Takahashi H et al (2013) An autopsy case of methemoglobinemia with ochronosis. Shindan Byori. Jpn J Diagn Pathol 30:112–117 (in Japanese)Google Scholar
  29. Miyata T, Saito A, Kurokawa K, van Persele Y, de Strihou C (2001) Advance glycation and lipoxidation end products: reactive carbonyl compounds-related uraemic toxicity. Nephrol Dial Transplant 16(4):8–11CrossRefPubMedGoogle Scholar
  30. Mullan A, Cocker D, Taylor G et al (2015) Fatal oxidative haemolysis and methaemoglobinaemia in a patient with alkaptonuria and acute kidney injury. Clin Kidney J 8:109–112PubMedCentralCrossRefPubMedGoogle Scholar
  31. Olszewska M (2004) The effect of hemodialysis on some parameters of the antioxidant system in the blood of patients with chronic renal failure. Ann Acad Med Stetin 50:41–52PubMedGoogle Scholar
  32. Phomphutkul C, Introne WJ, Perry MB et al (2002) Natural history of alkaptonuria. N Eng J Med 347:2111–2121Google Scholar
  33. Preston AJ, Keenan CM, Sutherland H et al (2014) Ochronotic osteoarthropathy in a mouse model of alkaptonuria, and its inhibition by nitisinone. Ann Rheum Dis 73:284–289CrossRefPubMedGoogle Scholar
  34. Ranganath LR, Jarvis JC, Gallagher JA (2013) Recent advances in management of alkaptonuria. J Clin Pathol 66:367–373CrossRefPubMedGoogle Scholar
  35. Ranganath LR, Milan AM, Hughes AT et al (2014) Suitability of nitisinone in Alkaptonuria 1 (SONIA 1): an international, multicentre, randomised, open-label, no-treatment controlled, parallel-group, dose–response study to investigate the effect of once daily nitisinone on 24-h urinary homogentisic acid excretion in patients with alkaptonuria after 4 weeks of treatment. Ann Rheum Dis [Epub ahead of print]. doi: 10.1136/annrheumdis-2014-206033
  36. Simons JP, Al-Shawi R, Ellmerich S et al (2013) Pathogenetic mechanisms of amyloid A amyloidosis. P Natl Acad Sci USA 110:16115–16120Google Scholar
  37. Skold A, Cosco DL, Klein R (2011) Methemoglobinemia: pathogenesis, diagnosis, and management. South Med J 104:757–761CrossRefPubMedGoogle Scholar
  38. Stepniewska J, Ciechanowski K (2005) Oxidative stress as a reason of treatment difficulties in chronic renal failure. Pol Merkur Lekarski 19:697–700PubMedGoogle Scholar
  39. Stepniewska J, Dolegowska B, Ciechanowski K et al (2006) Erythrocyte antioxidant defense system in patients with chronic renal failure according to the hemodialysis conditions. Arch Med Res 37:353–359CrossRefPubMedGoogle Scholar
  40. Stewart RMK, Briggs MC, Jarvis JC et al (2014) Reversible keratopathy due to hypertyrosinaemia following intermittent low-dose nitisinone in alkaptonuria: a case report. JIMD Rep 17:1–6Google Scholar
  41. Suehiro K, Rinka H, Matsuura K et al (2007) A case of alkaptonuria with severe methemoglobinemia. Nihon Rinsho Kyukyu Igakukai Zasshi. J Jpn Soc Emer Med 10:71–75 (in Japanese)Google Scholar
  42. Suwannarat P, O’Brien K, Perry MB et al (2005) Use of nitisinone in patients with alkaptonuria. Metab Clin Exp 54:719–728Google Scholar
  43. Thimm E, Herebian D, Assmann B, Klee D, Mayatepek E, Spiekerkoetter U (2011) Increase of CSF tyrosine and impaired serotonin turnover in tyrosinemia type I. Mol Genet Metab 102:122–125CrossRefPubMedGoogle Scholar
  44. Uchiyama C, Kondoh H, Shintani H (2010) Acute methemoglobinemia associated with ochronotic valvular heart disease: report of a case. Thorac Cardiov Surg 58:113–119Google Scholar
  45. Urieli-Shoval S, Linke RP, Matzner Y (2000) Expression and function of serum amyloid A, a major acute-phase protein, in normal and disease states. Curr Opin Hematol 7:64–69CrossRefPubMedGoogle Scholar
  46. Venkataseshan VS, Chandra B, Graziano V et al (1992) Alkaptonuria and renal failure: a case report and review of the literature. Mod Pathol 5:464–471PubMedGoogle Scholar
  47. Zannoni VG, Lomtevas N, Goldfiner S (1969) Oxidation of homogentisic acid to ochronotic pigment in connective tissue. Biochim Biophys Acta 177:94CrossRefPubMedGoogle Scholar
  48. Zatkova A (2011) An update on molecular genetics of alkaptonuria (AKU). J Inherit Metab Dis 34:1127–1136CrossRefPubMedGoogle Scholar

Copyright information

© SSIEM 2015

Authors and Affiliations

  • A. S. Davison
    • 1
    • 2
  • A. M. Milan
    • 1
    • 2
  • J. A. Gallagher
    • 2
  • L. R. Ranganath
    • 1
    • 2
  1. 1.Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical LaboratoriesRoyal Liverpool University Hospitals TrustLiverpoolUK
  2. 2.Bone and Joint Research Group, Musculoskeletal BiologyUniversity of LiverpoolLiverpoolUK

Personalised recommendations