Journal of Inherited Metabolic Disease

, Volume 38, Issue 5, pp 931–940 | Cite as

A new case of UDP-galactose transporter deficiency (SLC35A2-CDG): molecular basis, clinical phenotype, and therapeutic approach

  • K. Dörre
  • M. Olczak
  • Y. Wada
  • P. Sosicka
  • M. Grüneberg
  • J. Reunert
  • G. Kurlemann
  • B. Fiedler
  • S. Biskup
  • K. Hörtnagel
  • S. Rust
  • T. MarquardtEmail author
Original Article


Congenital disorders of glycosylation (CDG) are a group of hereditary metabolic diseases characterized by abnormal glycosylation of proteins and lipids. Often, multisystem disorders with central nervous system involvement and a large variety of clinical symptoms occur. The main characteristics are developmental delay, seizures, and ataxia. In this paper we report the clinical and biochemical characteristics of a 5-year-old girl with a defective galactosylation of N-glycans, resulting in developmental delay, muscular hypotonia, epileptic seizures, inverted nipples, and visual impairment. Next generation sequencing revealed a de novo mutation (c.797G > T, p.G266V) in the X-chromosomal gene SLC35A2 (solute carrier family 35, UDP-galactose transporter, member A2; MIM 300896). While this mutation was found heterozygous, random X-inactivation of the normal allele will lead to loss of normal SLC35A2 activity in respective cells. The functional relevance of the mutation was demonstrated by complementation of UGT-deficient MDCK-RCAr and CHO-Lec8 cells by normal UGT-expression construct but not by the mutant version. The effect of dietary galactose supplementation on glycosylation was investigated, showing a nearly complete normalization of transferrin glycosylation.


Galactose Transferrin Serum Transferrin Solute Carrier Family Muscular Hypotonia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Adrenocorticotropic hormone


Congenital disorder of glycosylation


Dulbecco’s phosphate-buffered saline




Early onset epileptic encephalopathy


Endoplasmic reticulum


Electrospray ionization


High performance liquid chromatography


Isoelectric focusing




Matrix-assisted laser desorption/ionization


Magnetic resonance imaging


Nucleotide sugar transporters


Otoacoustic emissions


Reverse transcription polymerase chain reaction


Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SLC family

Solute carrier family




UDP-galactose transporter



We thank Maria Plate, Martina Herting and Ingrid Du Chesne for technical assistance. Vitaflo is acknowledged for providing D-galactose for oral supplementation.

Compliance with ethics guidelines

Conflict of interest


Informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000(5). Informed consent was obtained from all patients for being included in the study.

Additional informed consent was obtained from all patients for whom identifying information is included in this article.

Supplementary material

10545_2015_9828_MOESM1_ESM.doc (48 kb)
ESM 1 (DOC 48 kb)
10545_2015_9828_Fig4_ESM.gif (583 kb)

(GIF 583 kb)

10545_2015_9828_MOESM2_ESM.tiff (1.2 mb)
High Resolution Image (TIFF 1277 kb)
10545_2015_9828_Fig5_ESM.gif (985 kb)

(GIF 984 kb)

10545_2015_9828_Fig6_ESM.gif (1.3 mb)

(GIF 984 kb)

10545_2015_9828_MOESM3_ESM.tiff (493 kb)
High Resolution Image (TIFF 493 kb)
10545_2015_9828_MOESM4_ESM.tiff (248 kb)
High Resolution Image (TIFF 248 kb)
10545_2015_9828_Fig7_ESM.gif (107 kb)

(GIF 106 kb)

10545_2015_9828_MOESM5_ESM.tiff (3.5 mb)
High Resolution Image (TIFF 3538 kb)
10545_2015_9828_Fig8_ESM.gif (141 kb)

(GIF 141 kb)

10545_2015_9828_MOESM6_ESM.tiff (1.9 mb)
High Resolution Image (TIFF 1912 kb)
10545_2015_9828_Fig9_ESM.gif (129 kb)

(GIF 128 kb)

10545_2015_9828_MOESM7_ESM.tiff (1.1 mb)
High Resolution Image (TIFF 1144 kb)


  1. Biffi S, Tamaro G, Bortot B, Zamberlan S, Severini GM, Carrozzi M (2007) Carbohydrate deficient transferrin (CDT) as a biochemical tool for the screening of congenital disorders of glycosylation (CDGs). Clin Biochem 40:1431–1434CrossRefPubMedGoogle Scholar
  2. Biskup S (2010) Molekualrgenetische und zytogenetische Diagnostik. Hochdurchsatz-Sequenzierung in der Humangenetischen Diagnostik. Next-generation sequencing in genetic diagnostics. J Lab Med 34(6):305–309Google Scholar
  3. Clayton P, Winchester B, Di Tomaso E, Young E, Keir G, Rodeck C (1993) Carbohydrate-deficient glycoprotein syndrome: normal glycosylation in the fetus. Lancet 341(8850):956CrossRefPubMedGoogle Scholar
  4. Ferrari MC, Parini R, Di Rocco MD, Radetti G, Beck-Peccoz P, Persani L (2001) Lectin analyses of glycoprotein hormones in patients with congenital disorders of glycosylation. Eur J Endocrinol 144(4):409–416CrossRefPubMedGoogle Scholar
  5. Freeze HH (2013) Understanding human glycosylation disorders: biochemistry leads the charge. J Biol Chem 288(10):6936–6945CrossRefPubMedCentralPubMedGoogle Scholar
  6. Hanßke B, Thiel C, Lübke T et al (2002) Deficiency of UDP-galactose: N-acetylglucosamine ß-1,4-galactosyltransferase I causes the congenital disorder of glycosylation type IId. J Clin Invest 109(6):725–733CrossRefPubMedCentralPubMedGoogle Scholar
  7. Hiraoka S, Furuichi T, Nishimura G et al (2007) Nucleotide-sugar transporter SLC35D1 is critical to chondroitin sulfate synthesis in cartilage and skeletal development in mouse and human. Nat Med 13(11):1363–1367CrossRefPubMedGoogle Scholar
  8. Kabuß R, Ashikov A, Oelmann S, Gerardy-Schahn R, Bakker H (2005) Endoplasmic reticulum retention of the large splice variant of the UDP-galactose transporter is caused by a dilysine motif. Glycobiology 15(10):905–911CrossRefPubMedGoogle Scholar
  9. Kniffin CL, Hamosh A, Converse PJ, McKusick VA (2013) Solute carrier family 35 (UDP-GALACTOSE TRANSPORTER), MEMBER 2; SLC35A2.
  10. Kodera H, Nakamura K, Osaka H et al (2013) De novo mutations in SLC35A2 encoding a UDP-galactose transporter cause early-onset epileptic encephalopathy. Humu 0272Google Scholar
  11. Liu L, Xu YX, Hirschberg CB (2010) The role of nucleotide sugar transporters in development of eukaryotes. Semin Cell Dev Biol 21(6):600–608CrossRefPubMedCentralPubMedGoogle Scholar
  12. Lübke T, Marquardt T, Etzioni A, Hartmann E, von Figura K, Korner C (2001) Complementation cloning identifies CDG-IIc, a new type of congenital disorder of glycosylation, as a GDP-fucose transporter deficiency. Nat Genet 28(1):73–76PubMedGoogle Scholar
  13. Lühn K, Wild MK, Eckhardt M, Gerardy-Schahn R, Vestweber D (2001) The gene defective in leukocyte adhesion deficiency II encodes a putative GDP-fucose transporter. Nat Genet 28(1):69–72PubMedGoogle Scholar
  14. Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–373CrossRefPubMedGoogle Scholar
  15. Mandato C, Brive L, Miura Y et al (2006) Cryptogenic liver disease in four children: a novel congenital disorder of glycosylation. Pediatr Res 59(2):293–298CrossRefPubMedGoogle Scholar
  16. Marquardt T, Denecke J (2003) Congenital disorders of glycosylation: Review of their molecular bases, clinical presentations and specific therapies. Eur J Pediatr 162:359–379PubMedGoogle Scholar
  17. Marquardt T, Lühn K, Srikrishna G, Freeze HH, Harms E, Vestweber D (1999) Correction of leukocyte adhesion deficiency type II with oral fucose. Blood 94(12):3976–3985PubMedGoogle Scholar
  18. Martinez I, Duncker I, Dupre T et al (2005) Genetic complementation reveals a novel human congenital disorder of glycosylation of type II, due to inactivation of the Golgi CMP-sialic acid transporter. Blood 105(7):2671–2676CrossRefGoogle Scholar
  19. Maszczak-Seneczko D, Olczak T, Wunderlich L, Olczak M (2011) Comparative analysis of involvement of UGT1 and UGT2 splice variants of UDP-galactose transporter in glycosylation of macromolecules in MDCK and CHO cell lines. Glycoconj J 28:481–492CrossRefPubMedCentralPubMedGoogle Scholar
  20. Nakamura N, Rabouille C, Watson R et al (1995) Characterization of cis-Golgi matrix protein, GM130. J Cell Biol 131:1715–1726CrossRefPubMedGoogle Scholar
  21. Ng BG, Buckingham KJ, Raymond K et al (2013) Mosaicism of the UDP-galactose transporter SLC35A2 causes a congenital disorder of glycosylation. Am J Hum Genet 92:632–636Google Scholar
  22. Niehues R, Hasilik M, Alton G et al (1998) Carbohydrate-deficient glycoprotein syndrome type Ib. Phosphomannose isomerase deficiency and mannose therapy. J Clin Invest 101:1414–1420CrossRefPubMedCentralPubMedGoogle Scholar
  23. Olczak M, Guillen E (2006) Characterization of a mutation and an alternative splicing of UDP-galactose transporter in MDCK-RCAr cell line. Biochim Biophys Acta 1763(1):82–92CrossRefPubMedGoogle Scholar
  24. Olczak M, Maszczak-Seneczko D, Sosicka P, Jakimowicz P, Olczak T (2013) UDP Gal/UDP-GlcNAc chimeric transporter complements mutation defect in mammalian cells deficient in UDP-Gal transporter. Biochem Biophys Res Commun 434(3):473–478CrossRefPubMedGoogle Scholar
  25. Song Z (2013) Roles of the nucleotide sugar transporters (SLC35 family) in health and disease. Mol Asp Med 34:590–600CrossRefGoogle Scholar
  26. Sprong H, Degroote S, Nilsson T et al (2003) Association of the Golgi UDP-galactose transporter with UDP-galactose:ceramide galactosyltransferase allows UDP-galactose import in the endoplasmic reticulum. Mol Biol Cell 14(9):3482–3493CrossRefPubMedCentralPubMedGoogle Scholar
  27. Stanley P (1989) Chinese hamster ovary cell mutants with multiple glcosylation defects for production of glycoproteins with minimal carbohydrate heterogeneity. Mol Cell Biol 9(2):377–383PubMedCentralPubMedGoogle Scholar
  28. Tegtmeyer LC, Rust S, van Scherpenzeel M et al (2014) Multiple phenotypes in phosphoglucomutase 1 deficiency. N Engl J Med 370:533–542CrossRefPubMedCentralPubMedGoogle Scholar
  29. Vallot C, Rougeulle C (2013) Inactivation du chromosome X chez l’humain XACT et XIST,à chacun son chromosome. Médecine/Sciences 29(2):223–225CrossRefGoogle Scholar
  30. Wada Y, Tajiri M, Yoshida S (2004) Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal Chem 76(22):6560–6565CrossRefPubMedGoogle Scholar

Copyright information

© SSIEM 2015

Authors and Affiliations

  • K. Dörre
    • 1
  • M. Olczak
    • 2
  • Y. Wada
    • 3
  • P. Sosicka
    • 2
  • M. Grüneberg
    • 1
  • J. Reunert
    • 1
  • G. Kurlemann
    • 1
  • B. Fiedler
    • 1
  • S. Biskup
    • 4
  • K. Hörtnagel
    • 4
  • S. Rust
    • 1
  • T. Marquardt
    • 1
    Email author
  1. 1.Universitätsklinikum MünsterKlinik für Kinder-und JugendmedizinMuensterGermany
  2. 2.Laboratory of Biochemistry, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
  3. 3.Osaka Medical Center and Research Institute for Maternal and Child HealthIzumiJapan
  4. 4.Praxis für Humangenetik und CeGaT GmbHTübingenGermany

Personalised recommendations