Advertisement

Journal of Inherited Metabolic Disease

, Volume 38, Issue 1, pp 179–186 | Cite as

Palmitoylation and depalmitoylation defects

  • Thorsten HornemannEmail author
Complex Lipids

Abstract

Palmitoylation describes the enzymatic attachment of a 16-carbon atom fatty acid to a target protein. Such lipidation events occur in all eukaryotes and can be of reversible (S-palmitoylation) or irreversible (N-palmitoylation) nature. In particular S-palmitoylation is dynamically regulated by two opposing types of enzymes which add (palmitoyl acyltransferases - PAT) or remove (acyl protein thioesterases) palmitate from proteins. Protein palmitoylation is an important process that dynamically regulates the assembly and compartmentalization of many neuronal proteins at specific subcellular sites. Enzymes that regulate protein palmitoylation are critical for several biological processes. To date, eight palmitoylation related genes have been reported to be associated with human disease. This review intends to give an overview on the pathological changes which are associated with defects in the palmitoylation/depalmitoylation process.

Keywords

Amyloid Precursor Protein Palmitoyl Neuronal Ceroid Lipofuscinosis Batten Disease YAC128 Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

T. Hornemann is grateful to the Gebert Rüf Foundation (GRS-047/09), the Center of Integrated Human Physiology (ZIHP) and “radiz” – Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich.

Compliance with ethics guidelines

This article does not contain any studies with human or animal subjects performed by the author.

Conflict of interest

None.

References

  1. Arstikaitis P, Gauthier-Campbell C, Carolina Gutierrez Herrera R et al (2008) Paralemmin-1, a modulator of filopodia induction is required for spine maturation. Mol Biol Cell 19(5):2026–2038PubMedCentralPubMedGoogle Scholar
  2. Barrott JJ, Cash GM, Smith AP, Barrow JR, Murtaugh LC (2011) Deletion of mouse Porcn blocks Wnt ligand secretion and reveals an ectodermal etiology of human focal dermal hypoplasia/Goltz syndrome. Proc Natl Acad Sci U S A 108(31):12752–12757PubMedCentralPubMedGoogle Scholar
  3. Bartels DJ, Mitchell DA, Dong X, Deschenes RJ (1999) Erf2, a novel gene product that affects the localization and palmitoylation of Ras2 in Saccharomyces cerevisiae. Mol Cell Biol 19(10):6775–6787PubMedCentralPubMedGoogle Scholar
  4. Bellizzi JJ 3rd, Widom J, Kemp C et al (2000) The crystal structure of palmitoyl protein thioesterase 1 and the molecular basis of infantile neuronal ceroid lipofuscinosis. Proc Natl Acad Sci U S A 97(9):4573–4578PubMedCentralPubMedGoogle Scholar
  5. Benjannet S, Elagoz A, Wickham L et al (2001) Post-translational processing of beta-secretase (beta-amyloid-converting enzyme) and its ectodomain shedding. The pro- and transmembrane/cytosolic domains affect its cellular activity and amyloid-beta production. J Biol Chem 276(14):10879–10887PubMedGoogle Scholar
  6. Biechele S, Cox BJ, Rossant J (2011) Porcupine homolog is required for canonical Wnt signaling and gastrulation in mouse embryos. Dev Biol 355(2):275–285PubMedGoogle Scholar
  7. Brown DA (2006) Lipid rafts, detergent-resistant membranes, and raft targeting signals. Physiology 21:430–439PubMedGoogle Scholar
  8. Callier P, Calvel P, Matevossian A et al (2014) Loss of function mutation in the palmitoyl-transferase HHAT leads to syndromic 46, XY disorder of sex development by impeding Hedgehog protein palmitoylation and signaling. PLoS Genet 10(5):e1004340PubMedCentralPubMedGoogle Scholar
  9. Cattaneo E, Zuccato C, Tartari M (2005) Normal huntingtin function: an alternative approach to Huntington’s disease. Nat Rev Neurosci 6(12):919–930PubMedGoogle Scholar
  10. Charollais J, Van Der Goot FG (2009) Palmitoylation of membrane proteins (Review). Mol Membr Biol 26(1):55–66PubMedGoogle Scholar
  11. Chen MH, Li YJ, Kawakami T, Xu SM, Chuang PT (2004a) Palmitoylation is required for the production of a soluble multimeric Hedgehog protein complex and long-range signaling in vertebrates. Genes Dev 18(6):641–659PubMedCentralPubMedGoogle Scholar
  12. Chen WY, Shi YY, Zheng YL et al (2004b) Case–control study and transmission disequilibrium test provide consistent evidence for association between schizophrenia and genetic variation in the 22q11 gene ZDHHC8. Hum Mol Genet 13(23):2991–2995PubMedGoogle Scholar
  13. Cho S, Dawson G (2000) Palmitoyl protein thioesterase 1 protects against apoptosis mediated by Ras-Akt-caspase pathway in neuroblastoma cells. J Neurochem 74(4):1478–1488PubMedGoogle Scholar
  14. Cho S, Dawson PE, Dawson G (2000) Antisense palmitoyl protein thioesterase 1 (PPT1) treatment inhibits PPT1 activity and increases cell death in LA-N-5 neuroblastoma cells. J Neurosci Res 62(2):234–240PubMedGoogle Scholar
  15. Conibear E, Davis NG (2010) Palmitoylation and depalmitoylation dynamics at a glance. J Cell Sci 123(Pt 23):4007–4010PubMedCentralPubMedGoogle Scholar
  16. Demily C, Legallic S, Bou J et al (2007) ZDHHC8 single nucleotide polymorphism rs175174 is not associated with psychiatric features of the 22q11 deletion syndrome or schizophrenia. Psychiatr Genet 17(5):311–312PubMedGoogle Scholar
  17. Doubravska L, Krausova M, Gradl D et al (2011) Fatty acid modification of Wnt1 and Wnt3a at serine is prerequisite for lipidation at cysteine and is essential for Wnt signalling. Cell Signal 23(5):837–848PubMedGoogle Scholar
  18. Ducker CE, Stettler EM, French KJ, Upson JJ, Smith CD (2004) Huntingtin interacting protein 14 is an oncogenic human protein: palmitoyl acyltransferase. Oncogene 23(57):9230–9237PubMedCentralPubMedGoogle Scholar
  19. Duncan JA, Gilman AG (1998) A cytoplasmic acyl-protein thioesterase that removes palmitate from G protein alpha subunits and p21 (RAS). J Biol Chem 273(25):15830–15837PubMedGoogle Scholar
  20. El-Husseini AE, Bredt DS (2002) Protein palmitoylation: a regulator of neuronal development and function. Nat Rev Neurosci 3(10):791–802Google Scholar
  21. El-Husseini AE, Craven SE, Chetkovich DM et al (2000) Dual palmitoylation of PSD-95 mediates its vesiculotubular sorting, postsynaptic targeting, and ion channel clustering. J Cell Biol 148(1):159–172PubMedCentralPubMedGoogle Scholar
  22. El-Husseini AE, Schnell E, Dakoji S et al (2002) Synaptic strength regulated by palmitate cycling on PSD-95. Cell 108(6):849–863Google Scholar
  23. Fukata Y, Fukata M (2010) Protein palmitoylation in neuronal development and synaptic plasticity. Nat Rev Neurosci 11(3):161–175PubMedGoogle Scholar
  24. Fukata M, Fukata Y, Adesnik H, Nicoll RA, Bredt DS (2004) Identification of PSD-95 palmitoylating enzymes. Neuron 44(6):987–996PubMedGoogle Scholar
  25. Galli LM, Barnes TL, Secrest SS, Kadowaki T, Burrus LW (2007) Porcupine-mediated lipid-modification regulates the activity and distribution of Wnt proteins in the chick neural tube. Development 134(18):3339–3348PubMedGoogle Scholar
  26. Gauthier-Campbell C, Bredt DS, Murphy TH AEE-H (2004) Regulation of dendritic branching and filopodia formation in hippocampal neurons by specific acylated protein motifs. Mol Biol Cell 15(5):2205–2217PubMedCentralPubMedGoogle Scholar
  27. Glaser B, Schumacher J, Williams HJ et al (2005) No association between the putative functional ZDHHC8 single nucleotide polymorphism rs175174 and schizophrenia in large European samples. Biol Psychiatry 58(1):78–80PubMedGoogle Scholar
  28. Glaser B, Moskvina V, Kirov G et al (2006) Analysis of ProDH, COMT and ZDHHC8 risk variants does not support individual or interactive effects on schizophrenia susceptibility. Schizophr Res 87(1–3):21–27PubMedGoogle Scholar
  29. Greaves J, Chamberlain LH (2011) DHHC palmitoyl transferases: substrate interactions and (patho) physiology. Trends Biochem Sci 36(5):245–253PubMedGoogle Scholar
  30. Greaves J, Prescott GR, Gorleku OA, Chamberlain LH (2009) The fat controller: roles of palmitoylation in intracellular protein trafficking and targeting to membrane microdomains (Review). Mol Membr Biol 26(1):67–79PubMedGoogle Scholar
  31. Greaves J, Gorleku OA, Salaun C, Chamberlain LH (2010) Palmitoylation of the SNAP25 protein family: specificity and regulation by DHHC palmitoyl transferases. J Biol Chem 285(32):24629–24638PubMedCentralPubMedGoogle Scholar
  32. Gupta P, Soyombo AA, Shelton JM et al (2003) Disruption of PPT2 in mice causes an unusual lysosomal storage disorder with neurovisceral features. Proc Natl Acad Sci U S A 100(21):12325–12330PubMedCentralPubMedGoogle Scholar
  33. Haltia M (2006) The neuronal ceroid-lipofuscinoses: from past to present. Bba-Mol Basis Dis 1762(10):850–856Google Scholar
  34. Hellsten E, Vesa J, Olkkonen VM, Jalanko A, Peltonen L (1996) Human palmitoyl protein thioesterase: evidence for lysosomal targeting of the enzyme and disturbed cellular routing in infantile neuronal ceroid lipofuscinosis. The EMBO j 15(19):5240–5245Google Scholar
  35. Hofmann K (2000) A superfamily of membrane-bound O-acyltransferases with implications for wnt signaling. Trends Biochem Sci 25(3):111–112PubMedGoogle Scholar
  36. Huang K, El-Husseini AE (2005) Modulation of neuronal protein trafficking and function by palmitoylation. Curr Opin Neurobiol 15(5):527–535PubMedGoogle Scholar
  37. Huang K, Yanai A, Kang R et al (2004) Huntingtin-interacting protein HIP14 is a palmitoyl transferase involved in palmitoylation and trafficking of multiple neuronal proteins. Neuron 44(6):977–986PubMedGoogle Scholar
  38. Huang K, Sanders S, Singaraja R et al (2009) Neuronal palmitoyl acyl transferases exhibit distinct substrate specificity. FASEB j : off pub of the Fed of Am Soc for Exp Biol 23(8):2605–2615Google Scholar
  39. Kalchman MA, Graham RK, Xia G et al (1996) Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme. J Biol Chem 271(32):19385–19394PubMedGoogle Scholar
  40. Kang R, Wan J, Arstikaitis P et al (2008) Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation. Nature 456(7224):904–909PubMedCentralPubMedGoogle Scholar
  41. Kato H, Allen ND, Emson PC, Kiyama H (2000) GAP-43 N-terminal translocation signal targets beta-galactosidase to developing axons in a pan-neuronal transgenic mouse line. Brain Res Dev Brain Res 121(1):109–112PubMedGoogle Scholar
  42. Kim E, Sheng M (2004) PDZ domain proteins of synapses. Nat Rev Neurosci 5(10):771–781PubMedGoogle Scholar
  43. Kutzleb C, Sanders G, Yamamoto R et al (1998) Paralemmin, a prenyl-palmitoyl-anchored phosphoprotein abundant in neurons and implicated in plasma membrane dynamics and cell process formation. J Cell Biol 143(3):795–813PubMedCentralPubMedGoogle Scholar
  44. Laux T, Fukami K, Thelen M, Golub T, Frey D, Caroni P (2000) GAP43, MARCKS, and CAP23 modulate PI (4,5) P (2) at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J Cell Biol 149(7):1455–1472PubMedCentralPubMedGoogle Scholar
  45. Levental I, Grzybek M, Simons K (2010) Greasing their way: lipid modifications determine protein association with membrane rafts. Biochemistry 49(30):6305–6316PubMedGoogle Scholar
  46. Levin SW, Baker EH, Zein WM et al (2014) Oral cysteamine bitartrate and N-acetylcysteine for patients with infantile neuronal ceroid lipofuscinosis: a pilot study. Lancet Neurol doi: 10.1016/S1474-4422(14)70142-5
  47. Linder ME, Deschenes RJ (2007) Palmitoylation: policing protein stability and traffic. Nat Rev Mol Cell Biol 8(1):74–84PubMedGoogle Scholar
  48. Liu H, Abecasis GR, Heath SC et al (2002) Genetic variation in the 22q11 locus and susceptibility to schizophrenia. Proc Natl Acad Sci U S A 99(26):16859–16864PubMedCentralPubMedGoogle Scholar
  49. Lobo S, Greentree WK, Linder ME, Deschenes RJ (2002) Identification of a Ras palmitoyltransferase in Saccharomyces cerevisiae. J Biol Chem 277(43):41268–41273PubMedGoogle Scholar
  50. Lyly A, Marjavaara SK, Kyttala A et al (2008) Deficiency of the INCL protein Ppt1 results in changes in ectopic F1-ATP synthase and altered cholesterol metabolism. Hum Mol Genet 17(10):1406–1417PubMedGoogle Scholar
  51. Mansilla F, Birkenkamp-Demtroder K, Kruhoffer M et al (2007) Differential expression of DHHC9 in microsatellite stable and instable human colorectal cancer subgroups. Br J Cancer 96(12):1896–1903PubMedCentralPubMedGoogle Scholar
  52. Mansouri MR, Marklund L, Gustavsson P et al (2005) Loss of ZDHHC15 expression in a woman with a balanced translocation t (X;15) (q13.3;cen) and severe mental retardation. EJHG 13(8):970–977PubMedGoogle Scholar
  53. Mill P, Lee AW, Fukata Y et al (2009) Palmitoylation regulates epidermal homeostasis and hair follicle differentiation. PLoS Genet 5(11):e1000748PubMedCentralPubMedGoogle Scholar
  54. Mitchell DA, Vasudevan A, Linder ME, Deschenes RJ (2006) Protein palmitoylation by a family of DHHC protein S-acyltransferases. J Lipid Res 47(6):1118–1127PubMedGoogle Scholar
  55. Mitchison HM, Hofmann SL, Becerra CH et al (1998) Mutations in the palmitoyl-protein thioesterase gene (PPT; CLN1) causing juvenile neuronal ceroid lipofuscinosis with granular osmiophilic deposits. Hum Mol Genet 7(2):291–297PubMedGoogle Scholar
  56. Mizumaru C, Saito Y, Ishikawa T et al (2009) Suppression of APP-containing vesicle trafficking and production of beta-amyloid by AID/DHHC-12 protein. J Neurochem 111(5):1213–1224PubMedGoogle Scholar
  57. Mukai J, Liu H, Burt RA et al (2004) Evidence that the gene encoding ZDHHC8 contributes to the risk of schizophrenia. Nat Genet 36(7):725–731PubMedGoogle Scholar
  58. Mukai J, Dhilla A, Drew LJ et al (2008) Palmitoylation-dependent neurodevelopmental deficits in a mouse model of 22q11 microdeletion. Nat Neurosci 11(11):1302–1310PubMedCentralPubMedGoogle Scholar
  59. Nadolski MJ, Linder ME (2007) Protein lipidation. FEBS J 274(20):5202–5210PubMedGoogle Scholar
  60. Nasir J, Floresco SB, O’Kusky JR et al (1995) Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81(5):811–823PubMedGoogle Scholar
  61. Ohno Y, Kihara A, Sano T, Igarashi Y (2006) Intracellular localization and tissue-specific distribution of human and yeast DHHC cysteine-rich domain-containing proteins. Biochim Biophys Acta 1761(4):474–483PubMedGoogle Scholar
  62. Otani K, Ujike H, Tanaka Y et al (2005) The ZDHHC8 gene did not associate with bipolar disorder or schizophrenia. Neurosci Lett 390(3):166–170PubMedGoogle Scholar
  63. Oyama T, Miyoshi Y, Koyama K et al (2000) Isolation of a novel gene on 8p21.3-22 whose expression is reduced significantly in human colorectal cancers with liver metastasis. Genes Chromosomes Cancer 29(1):9–15PubMedGoogle Scholar
  64. Polakis P (2007) The many ways of Wnt in cancer. Curr Opin Genet Dev 17(1):45–51PubMedGoogle Scholar
  65. Politis EG, Roth AF, Davis NG (2005) Transmembrane topology of the protein palmitoyl transferase Akr1. J Biol Chem 280(11):10156–10163PubMedGoogle Scholar
  66. Prescott GR, Gorleku OA, Greaves J, Chamberlain LH (2009) Palmitoylation of the synaptic vesicle fusion machinery. J Neurochem 110(4):1135–1149PubMedGoogle Scholar
  67. Putilina T, Wong P, Gentleman S (1999) The DHHC domain: a new highly conserved cysteine-rich motif. Mol Cell Biochem 195(1–2):219–226PubMedGoogle Scholar
  68. Raymond FL, Tarpey PS, Edkins S et al (2007) Mutations in ZDHHC9, which encodes a palmitoyltransferase of NRAS and HRAS, cause X-linked mental retardation associated with a Marfanoid habitus. Am J Hum Genet 80(5):982–987PubMedCentralPubMedGoogle Scholar
  69. Resh MD (2006) Palmitoylation of ligands, receptors, and intracellular signaling molecules. Science’s STKE : signal transduction knowledge environment 2006 (359): re14Google Scholar
  70. Rocks O, Peyker A, Bastiaens PI (2006) Spatio-temporal segregation of Ras signals: one ship, three anchors, many harbors. Curr Opin Cell Biol 18(4):351–357PubMedGoogle Scholar
  71. Rocks O, Gerauer M, Vartak N et al (2010) The palmitoylation machinery is a spatially organizing system for peripheral membrane proteins. Cell 141(3):458–471PubMedGoogle Scholar
  72. Roos RA (2010) Huntington’s disease: a clinical review. Orphanet j of rare dis 5(1):40Google Scholar
  73. Roth AF, Feng Y, Chen L, Davis NG (2002) The yeast DHHC cysteine-rich domain protein Akr1p is a palmitoyl transferase. J Cell Biol 159(1):23–28PubMedCentralPubMedGoogle Scholar
  74. Rusch M, Zimmermann TJ, Burger M et al (2011) Identification of acyl protein thioesterases 1 and 2 as the cellular targets of the Ras-signaling modulators palmostatin B and M. Angew Chem Int Ed Engl 50(42):9838–9842PubMedGoogle Scholar
  75. Saito S, Ikeda M, Iwata N et al (2005) No association was found between a functional SNP in ZDHHC8 and schizophrenia in a Japanese case–control population. Neurosci Lett 374(1):21–24PubMedGoogle Scholar
  76. Salaun C, Greaves J, Chamberlain LH (2010) The intracellular dynamic of protein palmitoylation. J Cell Biol 191(7):1229–1238PubMedCentralPubMedGoogle Scholar
  77. Saleem AN, Chen YH, Baek HJ et al (2010) Mice with alopecia, osteoporosis, and systemic amyloidosis due to mutation in Zdhhc13, a gene coding for palmitoyl acyltransferase. PLoS Genet 6(6):e1000985PubMedCentralPubMedGoogle Scholar
  78. Santavuori P (2011) The Neuronal ceroid lipofuscinoses, Mole, Sara/ Williams, Ruth/ Goebel, Hans Oxford University Press ELTGoogle Scholar
  79. Schlesinger MJ, Magee AI, Schmidt MF (1980) Fatty acid acylation of proteins in cultured cells. J Biol Chem 255(21):10021–10024PubMedGoogle Scholar
  80. Schmidt MF, Schlesinger MJ (1979) Fatty acid binding to vesicular stomatitis virus glycoprotein: a new type of post-translational modification of the viral glycoprotein. Cell 17(4):813–819PubMedGoogle Scholar
  81. Shin HD, Park BL, Bae JS et al (2010) Association of ZDHHC8 polymorphisms with smooth pursuit eye movement abnormality. Am j of med genet Part B, Neuropsychiatr genet : the official publication of the Int Soc of Psychiatr Genet 153B(6):1167–1172Google Scholar
  82. Shindou H, Shimizu T (2009) Acyl-CoA:lysophospholipid acyltransferases. J Biol Chem 284(1):1–5PubMedGoogle Scholar
  83. Singaraja RR, Hadano S, Metzler M et al (2002) HIP14, a novel ankyrin domain-containing protein, links huntingtin to intracellular trafficking and endocytosis. Hum Mol Genet 11(23):2815–2828PubMedGoogle Scholar
  84. Singaraja RR, Huang K, Sanders SS et al (2011) Altered palmitoylation and neuropathological deficits in mice lacking HIP14. Hum Mol Genet 20(20):3899–3909PubMedCentralPubMedGoogle Scholar
  85. Slow EJ, van Raamsdonk J, Rogers D et al (2003) Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet 12(13):1555–1567PubMedGoogle Scholar
  86. Soyombo AA, Hofmann SL (1997) Molecular cloning and expression of palmitoyl-protein thioesterase 2 (PPT2), a homolog of lysosomal palmitoyl-protein thioesterase with a distinct substrate specificity. J Biol Chem 272(43):27456–27463PubMedGoogle Scholar
  87. Sturrock A, Leavitt BR (2010) The clinical and genetic features of Huntington disease. J Geriatr Psychiatry Neurol 23(4):243–259PubMedGoogle Scholar
  88. Takada R, Satomi Y, Kurata T et al (2006) Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev Cell 11(6):791–801PubMedGoogle Scholar
  89. Tian L, McClafferty H, Jeffries O, Shipston MJ (2010) Multiple palmitoyltransferases are required for palmitoylation-dependent regulation of large conductance calcium- and voltage-activated potassium channels. J Biol Chem 285(31):23954–23962PubMedCentralPubMedGoogle Scholar
  90. Tomatis VM, Trenchi A, Gomez GA, Daniotti JL (2010) Acyl-protein thioesterase 2 catalyzes the deacylation of peripheral membrane-associated GAP-43. PLoS ONE 5(11):e15045PubMedCentralPubMedGoogle Scholar
  91. Tyynela J, Palmer DN, Baumann M, Haltia M (1993) Storage of saposins A and D in infantile neuronal ceroid-lipofuscinosis. FEBS Lett 330(1):8–12PubMedGoogle Scholar
  92. Veit M, Serebryakova MV, Kordyukova LV (2013) Palmitoylation of influenza virus proteins. Biochem Soc Trans 41(1):50–55PubMedGoogle Scholar
  93. Verkruyse LA, Hofmann SL (1996) Lysosomal targeting of palmitoyl-protein thioesterase. J Biol Chem 271(26):15831–15836PubMedGoogle Scholar
  94. Vesa J, Hellsten E, Verkruyse LA et al (1995) Mutations in the palmitoyl protein thioesterase gene causing infantile neuronal ceroid lipofuscinosis. Nature 376(6541):584–587PubMedGoogle Scholar
  95. Vetrivel KS, Meckler X, Chen Y et al (2009) Alzheimer disease Abeta production in the absence of S-palmitoylation-dependent targeting of BACE1 to lipid rafts. J Biol Chem 284(6):3793–3803PubMedCentralPubMedGoogle Scholar
  96. Wang X, Reid Sutton V, Omar Peraza-Llanes J et al (2007) Mutations in X-linked PORCN, a putative regulator of Wnt signaling, cause focal dermal hypoplasia. Nat Genet 39(7):836–838PubMedGoogle Scholar
  97. Warby SC, Visscher H, Collins JA et al (2011) HTT haplotypes contribute to differences in Huntington disease prevalence between Europe and East Asia. EJHG 19(5):561–566PubMedCentralPubMedGoogle Scholar
  98. Willert K, Brown JD, Danenberg E et al (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423(6938):448–452PubMedGoogle Scholar
  99. Xu M, St Clair D, He L (2010) Testing for genetic association between the ZDHHC8 gene locus and susceptibility to schizophrenia: an integrated analysis of multiple datasets. Am j of med genet Part B, Neuropsychiatr genet : the official publication of the Int Soc of Psychiatr Genet 153B(7):1266–1275Google Scholar
  100. Yamamoto Y, Chochi Y, Matsuyama H et al (2007) Gain of 5p15.33 is associated with progression of bladder cancer. Oncology 72(1–2):132–138PubMedGoogle Scholar
  101. Yanai A, Huang K, Kang R et al (2006) Palmitoylation of huntingtin by HIP14 is essential for its trafficking and function. Nat Neurosci 9(6):824–831PubMedCentralPubMedGoogle Scholar
  102. Yeh DC, Duncan JA, Yamashita S, Michel T (1999) Depalmitoylation of endothelial nitric-oxide synthase by acyl-protein thioesterase 1 is potentiated by Ca (2+)-calmodulin. J Biol Chem 274(46):33148–33154PubMedGoogle Scholar
  103. Zeidman R, Jackson CS, Magee AI (2009) Protein acyl thioesterases (Review). Mol Membr Biol 26(1):32–41PubMedGoogle Scholar
  104. Zhang Z, Lee YC, Kim SJ et al (2006) Palmitoyl-protein thioesterase-1 deficiency mediates the activation of the unfolded protein response and neuronal apoptosis in INCL. Hum Mol Genet 15(2):337–346PubMedGoogle Scholar
  105. Zhang J, Planey SL, Ceballos C, Stevens SM Jr, Keay SK, Zacharias DA (2008) Identification of CKAP4/p63 as a major substrate of the palmitoyl acyltransferase DHHC2, a putative tumor suppressor, using a novel proteomics method. Mol & cel proteomics : MCP 7(7):1378–1388Google Scholar

Copyright information

© SSIEM 2014

Authors and Affiliations

  1. 1.Institute for Clinical ChemistryUniversity Hospital ZurichZurichSwitzerland
  2. 2.Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP)University of ZurichZurichSwitzerland

Personalised recommendations