Advertisement

Journal of Inherited Metabolic Disease

, Volume 38, Issue 3, pp 489–493 | Cite as

Evaluation of glycogen storage disease as a cause of ketotic hypoglycemia in children

  • Laurie M. Brown
  • Michelle M. Corrado
  • Rixt M. van der Ende
  • Terry G. J. Derks
  • Margaret A. Chen
  • Sara Siegel
  • Kate Hoyt
  • Catherine E. Correia
  • Christopher Lumpkin
  • Theresa B. Flanagan
  • Caroline T. Carreras
  • David A. Weinstein
Glycogenoses

Abstract

Introduction

Ketone formation is a normal response when hypoglycemia occurs. Since the majority of children with recurrent hypoglycemia cannot be diagnosed with a known endocrine or metabolic disorder on a critical sample, ketotic hypoglycemia has been described as the most common cause of low blood glucose concentrations in children. Critical samples, however, will miss the ketotic forms of glycogen storage disease (GSD), which present with elevated ketones, hypoglycemia, and normal hormonal concentrations.

Results

A total of 164 children (96 boys, 68 girls) were enrolled in the study. Prediction of pathogenicity of DNA changes using computer modeling confirmed pathology in 20 individuals [four GSD 0, two GSD VI, 12 GSD IX alpha, one GSD IX beta, one GSD IX gamma] (12 %). Boys were most likely to have changes in the PHKA2 gene, consistent with GSD IX alpha, an X-linked disorder.

Conclusions

Mutations in genes involved in glycogen synthesis and degradation were commonly found in children with idiopathic ketotic hypoglycemia. GSD IX is likely an unappreciated cause of ketotic hypoglycemia in children, while GSD 0 and VI are relatively uncommon. GSD IX alpha should particularly be considered in boys with unexplained hypoglycemia.

Keywords

Hypoglycemia Glycogen Storage Disease Critical Sample Biotinidase Sort Intolerant From Tolerant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

GSD

glycogen storage disease

KH

ketotic hypoglycemia

Notes

Acknowledgments

This research was supported by philanthropic support provided by the following funds managed through the University of Florida Office of Development: Scott Miller GSD Program Fund, Matthew Ehrman Fund for GSD Research, Ralph and Alice Brown GSD Type VI Research Fund, Matthew’s GSD Type IX Fund, and the Sturtz GSD Research Fund. We thank patients and families for their participation, along with the many physicians named in “Appendix 1”, who provided samples for the investigations. The authors also thank Andie Jacinto, Iris Ferrecchia, Tayoot Chengsupanimit, and Megan Curry for their help with proofreading, table preparation, and assisting with the reference section.

Conflict of interest

None.

References

  1. Adzhubei IA, Schmidt S, Peshkin L et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249CrossRefPubMedCentralPubMedGoogle Scholar
  2. Bachrach BE, Weinstein DA, Orho-Melander M, Burgess A, Wolfsdorf JI (2002) Glycogen synthase deficiency (glycogen storage disease type 0) presenting with hyperglycemia and glucosuria: report of three new mutations. J Pediatr 140:781–783CrossRefPubMedGoogle Scholar
  3. Bashan N, Potashnik R, Ehrlich T, Moses SW (1987) Phosphorylase kinase in leukocytes and erythrocytes of a patient with glycogen storage disease type IX. J Inherit Metab Dis 10(2):119–127CrossRefPubMedGoogle Scholar
  4. Bodamer OA, Hussein K, Morris AA et al (2006) Glucose and leucine kinetics in idiopathic ketotic hypoglycemia. Arch Dis Child 91:483–486CrossRefPubMedCentralPubMedGoogle Scholar
  5. Daly LP, Osterhoudt KC, Weinzimer SA (2003) Presenting features of idiopathic ketotic hypoglycemia. J Emerg Med 25:39–43CrossRefPubMedGoogle Scholar
  6. Davit-Spraul A, Piraud M, Dobbelaere D et al (2011) Liver glycogen storage diseases due to phosphorylase system deficiencies: diagnosis thanks to non invasive blood enzymatic and molecular studies. Mol Genet Metab 104(1–2):137–143CrossRefPubMedGoogle Scholar
  7. Grunt JA, McGarry ME, McCollum AT, Gould JB (1970) Studies of children with ketotic hypoglycemia. Yale J Biol Med 42:420–438PubMedCentralPubMedGoogle Scholar
  8. Haymond MW, Karl IE, Pagliara AS (1974) Ketotic hypoglycemia: an amino acid substrate limited disorder. J Endocrinol Metab 38:521–530CrossRefGoogle Scholar
  9. Huidekoper HH, Duran M, Turkenburg M, Ackermans MT, Sauerwein HP, Wijburg FA (2008) Fasting adaptation in idiopathic ketotic hypoglycemia: a mismatch between glucose production and demand. Eur J Pediatr 167:859–865CrossRefPubMedGoogle Scholar
  10. Kogut MD, Blaskovics M, Donnell GN (1969) Idiopathic hypoglycemia: a study of twenty-six children. J Pediatr 74:853–871CrossRefPubMedGoogle Scholar
  11. Morris AA, Leonard JV (1997) Early recognition of metabolic decompensation. Arch Dis Child 76(6):555–556CrossRefPubMedCentralPubMedGoogle Scholar
  12. Nessa A, Kumaran A, Kirk R, Dalton A, Ismail D, Hussain K (2012) Mutation al analysis of the GYS2 gene in patients diagnosed with ketotic hypoglycaemia. J Pediatr Endocrinol Metab 25(9–10):963–967PubMedGoogle Scholar
  13. Ng PC, Henikoff S (2001) Predicting deleterious amino acid substitutions. Genome Res 11(5):863–874CrossRefPubMedCentralPubMedGoogle Scholar
  14. Paesold-Burda P, Baumgartner MR, Santer R, Bosshard NU, Steinmann B (2007) Elevated serum biotinidase activity in hepatic glycogen storage disorders—a convenient biomarker. J Inherit Metab Dis 30(6):896–902CrossRefPubMedGoogle Scholar
  15. Pagliara AS, Karl IE, De Vivo DC, Feigin RD, Kipnis DM (1972) Hypoalaninemia: a concomitant of ketotic hypoglycemia. J Clin Invest 51:1440–1449CrossRefPubMedCentralPubMedGoogle Scholar
  16. Pollack ES, Pollack CV Jr (1993) Ketotic hypoglycemia: a case report. J Emerg Med 11:531–534CrossRefPubMedGoogle Scholar
  17. Schwarz JM, Rödelsperger C, Schuelke M, Seelow D (2010) Mutationtaster evaluates disease-causing potential of sequence alterations. Nat Methods 7(8):575–576CrossRefPubMedGoogle Scholar
  18. Tsilianidis LA, Fiske LM, Siegel S et al (2013) Aggressive therapy improves cirrhosis in glycogen storage disease type IX. Mol Genet Metab 109(2):179–182CrossRefPubMedCentralPubMedGoogle Scholar
  19. Weinstein DA, Wolfsdorf JI (2002) Glycogen storage diseases—a primer for clinicians. Endocrinologist 12:531–538CrossRefGoogle Scholar
  20. Weinstein DA, Correia CE, Saunders AC, Wolfsdorf JI (2006) Hepatic glycogen synthase deficiency: an under-recognized cause of ketotic hypoglycemia. Mol Genet Metab 87:284–288CrossRefPubMedCentralPubMedGoogle Scholar
  21. Wolfsdorf JI, Weinstein DA (2003) Glycogen storage diseases—genetics and management. Rev Endocr Metab Disord 4:95–102CrossRefPubMedGoogle Scholar

Copyright information

© SSIEM 2014

Authors and Affiliations

  • Laurie M. Brown
    • 1
  • Michelle M. Corrado
    • 1
  • Rixt M. van der Ende
    • 2
  • Terry G. J. Derks
    • 2
  • Margaret A. Chen
    • 3
  • Sara Siegel
    • 1
  • Kate Hoyt
    • 1
  • Catherine E. Correia
    • 1
  • Christopher Lumpkin
    • 1
  • Theresa B. Flanagan
    • 1
  • Caroline T. Carreras
    • 1
  • David A. Weinstein
    • 1
  1. 1.Glycogen Storage Disease Program, Division of Pediatric EndocrinologyUniversity of Florida College of MedicineGainesvilleUSA
  2. 2.Beatrix Children’s Hospital, Section of Metabolic Diseases and GUIDE, Graduate School for Drug ExplorationUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
  3. 3.PreventionGeneticsMarshfieldUSA

Personalised recommendations