Journal of Inherited Metabolic Disease

, Volume 37, Issue 4, pp 619–626 | Cite as

What is new for monoamine neurotransmitter disorders?

ICIEM Symposium 2013

Abstract

The monoamine neurotransmitter disorders are increasingly recognized as an expanding group of inherited neurometabolic syndromes caused by disturbances in the synthesis, transport and metabolism of the biogenic amines, including the catecholamines (dopamine, norepinephrine, and epinephrine) and serotonin. Disturbances in monoamine metabolism lead to neurological syndromes that frequently mimic other conditions, such as hypoxic ischemic encephalopathy, cerebral palsy, parkinsonism-dystonia syndromes, primary genetic dystonia and paroxysmal disorders. As a consequence, neurotransmitter disorders are frequently misdiagnosed. Early and accurate diagnosis of these neurotransmitter disorders is important, as many are highly amenable to, and some even cured by, therapeutic intervention. In this review, we highlight recent advances in the field, particularly the recent extensive characterization of known neurotransmitter disorders and identification of novel neurotransmitter disorders. We also provide an overview of current and future research in the field focused on developing novel treatment strategies.

References

  1. Allen GF, Land JM, Heales SJ (2009) A new perspective on the treatment of aromatic L-amino acid decarboxylase deficiency. Mol Genet Metab 97(1):6–14PubMedCrossRefGoogle Scholar
  2. Blackstone C (2009) Infantile parkinsonism-dystonia: a dopamine “transportopathy”. J Clin Invest 119:1455–1458PubMedCentralPubMedGoogle Scholar
  3. Blackstone C (2011) Infantile parkinsonism-dystonia due to dopamine transporter gene mutations: another genetic twist. Lancet Neurol 10(1):24–25PubMedCrossRefGoogle Scholar
  4. Bonafé L, Thőny B, Penzien JM, Czarnecki B, Blau N (2001a) Mutations in the sepiapterin reductase gene cause a novel tetrahydrobiopterin-dependent monoamine-neurotransmitter deficiency without hyperphenylalaninemia. Am J Hum Genet 69:269–277PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bonafé L, Thöny B, Leimbacher W, Kierat L, Blau N (2001b) Diagnosis of dopa-responsive dystonia and other tetrahydrobiopterin disorders by the study of biopterin metabolism in fibroblasts. Clin Chem 47(3):477–485PubMedGoogle Scholar
  6. Brasil S, Viecelli HM, Meili D et al (2011) Pseudoexom exclusion by antisense therapy in 6-Pyruvoyl –tetrahydrobiopterin synthase deficiency. Hum Mutat 32:1019–1027PubMedCrossRefGoogle Scholar
  7. Brun L, Ngu LH, Keng WT (2010) Clinical and biochemical features of aromatic L-amino acid decarboxylase deficiency. Neurology 75(1):64–71PubMedCrossRefGoogle Scholar
  8. Cawello W, Kim SR, Braun M, Elshoff JP, Ikeda J, Funaki T (2013) Pharmacokinetics, safety and tolerability of rotigotine transdermal patch in healthy Japanese and Caucasian subjects. Clin Drug Investig. doi:10.1007/s40261-013-0150-5 PubMedCentralGoogle Scholar
  9. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27(3):275–280PubMedCentralPubMedCrossRefGoogle Scholar
  10. Chang Y, Sharma R, Marsh J et al (2004) Levodopa-responsive aromatic L–amino acid decarboxylase deficiency. Ann Neurol 55(3):435–438PubMedCrossRefGoogle Scholar
  11. Chi CS, Lee HF, Tsai CR (2012) Tyrosine hydroxylase deficiency in Taiwanese infants. Pediatr Neurol 46(2):77–82PubMedCrossRefGoogle Scholar
  12. De Grandis E, Serrano M, Pérez-Dueñas B et al (2010) Cerebrospinal fluid alterations of the serotonin product, 5-hydroxyindolacetic acid, in neurological disorders. J Inherit Metab Dis 33(6):803–809PubMedCrossRefGoogle Scholar
  13. Eberling JL, Jaqust WJ, Christine CW et al (2008) Results from phase 1 safety trial of hAADC gene therapy for Parkinson disease. Neurology 80:1980–1983CrossRefGoogle Scholar
  14. Espay AJ, Chen R (2013) Myoclonus. Continuum (Minneap Minn) 19 (5 Movement Disorders):1264–86Google Scholar
  15. Fernandez-Alvarez E (2009) Movement disorders in children: recent advances in management. Indian J Pediatr 76:531–536PubMedCrossRefGoogle Scholar
  16. Friedman J, Hyland K, Blau N, MacCollin M (2006) Dopa-responsive hypersomnia and mixed movement disorder due to sepiapterin reductase deficiency. Neurology 67:2032–2035PubMedCrossRefGoogle Scholar
  17. Friedman J, Roze E, Abdenau JE et al (2012) Sepiapterin reductase deficiency: a treatable mimic of cerebral palsy. Ann Neurol 71:520–530PubMedCrossRefGoogle Scholar
  18. Garcia-Cazorla A, Duarte S, Serrano M et al (2008) Mitochondrial diseases mimicking neurotransmitter defects. Mitochondrion 8(3):273–278PubMedCrossRefGoogle Scholar
  19. Giovanniello T, Leuzzi V, Carducci C et al (2007) Tyrosine hydroxylase deficiency presenting with a biphasic clinical course. Neuropediatrics 38(4):213–215PubMedCrossRefGoogle Scholar
  20. Henriksen FH, Yasmeen S, Skjørringe T et al. (2012) Atypical dopamine transporter deficiency syndrome in two adult males with molecular characterisation of new transporter variants. New Orleans, LA: Soc Neurosci Meet Plann 2012, Poster 042Google Scholar
  21. Hwu WL, Muramatsu S, Tseng SH et al (2012) Gene therapy for aromatic L-amino acid decarboxylase deficiency. Sci Transl Med 4(134):134ra61PubMedGoogle Scholar
  22. Hyland K, Surtess RAH, Rodeck C, Clayton PT (1992) Aromatic l-amino acid decarboxylase deficiency: clinical features, diagnosis and treatment of a new inborn error of neurotransmitter amine synthesis. Neurology 42:1980–1988PubMedCrossRefGoogle Scholar
  23. Kurian MA (2013) What is the role of dopamine in childhood neurological disorders? Dev Med Child Neurol 55:490–496CrossRefGoogle Scholar
  24. Kurian M, Gissen P, Smith M, Heales S, Clayton P (2011a) The monoamine neurotransmitter disorders: an expanding range of neurological syndromes. Lancet Neurol 10:721–733PubMedCrossRefGoogle Scholar
  25. Kurian MA, Li Y, Zhen J et al (2011b) Clinical and molecular characterisation of hereditary dopamine transporter deficiency syndrome: an observational cohort and experimental study. Lancet Neurol 10(1):54–62PubMedCrossRefGoogle Scholar
  26. Kurian MA, Zhen J, Cheng SY et al (2009) Homozygous loss-of-function mutations in the gene encoding the dopamine transporter are associated with infantile parkinsonism-dystonia. J Clin Invest 119(6):1595–1603PubMedCentralPubMedGoogle Scholar
  27. Lee HF, Tsai CR, Chi CS, Chang TM, Lee HJ (2009) Aromatic L-amino acid decarboxylase deficiency in Taiwan. Eur J Paediatr Neurol 13(2):135–140PubMedCrossRefGoogle Scholar
  28. Leuzzi V, Carducci C, Tolve M, Giannini MT, Angeloni A, Carducci C (2013) Very early pattern of movement disorders in sepiapterin reductase deficiency. Neurology 81(24):2141–2142PubMedCrossRefGoogle Scholar
  29. Lohmann E, Koroglu Ç, Hanagasi H, Dursun B, Tasan E, Tolun A (2012) A homozygous frameshift mutation of sepiapterin reductase gene causing parkinsonism with onset in childhood. Parkinsonism Relat Disord 18(2):191–193PubMedCrossRefGoogle Scholar
  30. Mastrangelo M, Caputi C, Galosi S, Giannini MT, Leuzzi V (2013) Transdermal rotigotine in the treatment of aromatic L-amino acid decarboxylase deficiency. Mov Disord 28(4):556–557PubMedCrossRefGoogle Scholar
  31. Molero-Luis M, Serrano M, Ormazábal A et al (2013) Homovanillic acid in cerebrospinal fluid of 1388 children with neurological disorders. Dev Med Child Neurol 55(6):559–566PubMedCrossRefGoogle Scholar
  32. Moran MM, Allen NM, Treacy EP, King MD (2011) “Stiff neonate” with mitochondrial DNA depletion and secondary neurotransmitter defects. Pediatr Neurol 45(6):403–405PubMedCrossRefGoogle Scholar
  33. Neville BG, Parascandalo R, Farrugia R, Felice A (2005) Sepiapterin reductase deficiency: a congenital dopa-responsive motor and cognitive disorder. Brain 128(10):2291–2296PubMedCrossRefGoogle Scholar
  34. Ng J, Tuschl K, Kinali et al (2013) TH gene-negative infantile onset severe dopamine deficiency syndrome: a novel neurotransmitter disorder? Dev Med Child Neurol 5(S1):15Google Scholar
  35. Ng J, Zhen J, Meyer E et al. (2014) Dopamine transporter deficiency syndrome: phenotypic spectrum from infancy to adulthood. Brain. doi:10.1093/brain/awu022
  36. Pons R, Ford B, Chiriboga CA et al (2004) Aromatic amino acid decarboxylase deficiency: clinical features, treatment, prognosis. Neurology 62:1058–1065PubMedCrossRefGoogle Scholar
  37. Pons R, Syrengelas D, Youroukos S et al (2013) Levodopa-induced dyskinesias in tyrosine hydroxylase deficiency. Mov Disord 28(8):1058–1063PubMedCrossRefGoogle Scholar
  38. Rilstone J, Alkhater R, Minassian B (2013) Brain dopamine–serotonin vesicular transport disease and its treatment. N Engl J Med 368:543–550PubMedCrossRefGoogle Scholar
  39. Stamelou M, Mencacci NE, Cordivari C et al (2012) Myoclonus-dystonia syndrome due to tyrosine hydroxylase deficiency. Neurology 79(5):435–441PubMedCentralPubMedCrossRefGoogle Scholar
  40. Swoboda K, Furukawa Y (2008) Tyrosine hydroxylase deficiency. GeneReviewsTM. Retrieved from http://www.ncbi.nlm.nih.gov/books/NBK1437/ in December 2013
  41. Tay SK, Poh KS, Hyland K et al (2007) Unusually mild phenotype of AADC deficiency in 2 siblings. Mol Genet Metab 91(4):374–378PubMedCrossRefGoogle Scholar
  42. Tormenti MJ, Tomycz ND, Coffman KA, Kondziolka D, Crammond DJ, Tyler-Kabara EC (2011) Bilateral subthalamic nucleus deep brain stimulation for dopa-responsive dystonia in a 6-year-old child. J Neurosurg Pediatr 7(6):650–653PubMedCrossRefGoogle Scholar
  43. Verbeek MM, Willemsen MA, Wevers RA et al (2008) Two Greek siblings with sepiapterin reductase deficiency. Mol Genet Metab 94(4):403–409PubMedCrossRefGoogle Scholar
  44. Willemsen MA, Verbeek MM, Kamsteeg EJ et al (2010) Tyrosine hydroxylase deficiency: a treatable disorder of brain catecholamine biosynthesis. Brain 133(6):1810–1822PubMedCrossRefGoogle Scholar
  45. Yeung WL, Wong VC, Chan KY et al (2011) Expanding phenotype and clinical analysis of tyrosine hydroxylase deficiency. J Child Neurol 26(2):179–187PubMedCrossRefGoogle Scholar
  46. Zorzi G, Redweik U, Trippe H, Penzien JM, Thöny B, Blau N (2002) Detection of sepiapterin in CSF of patients with sepiapterin reductase deficiency. Mol Genet Metab 75:174–177PubMedCrossRefGoogle Scholar

Copyright information

© SSIEM and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of NeurologyGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
  2. 2.Developmental Neurosciences, UCL-Institute of Child Health, Room 111 Level 1 CMGUInstitute of Child HealthLondonUK

Personalised recommendations