Advertisement

Journal of Inherited Metabolic Disease

, Volume 36, Issue 4, pp 635–644 | Cite as

Current concepts in organic acidurias: understanding intra- and extracerebral disease manifestation

  • Stefan Kölker
  • Peter Burgard
  • Sven W. Sauer
  • Jürgen G. Okun
SSIEM Symposium 2012

Abstract

This review focuses on the pathophysiology of organic acidurias (OADs), in particular, OADs caused by deficient amino acid metabolism. OADs are termed classical if patients present with acute metabolic decompensation and multiorgan dysfunction or cerebral if patients predominantly present with neurological symptoms but without metabolic crises. In both groups, however, the brain is the major target. The high energy demand of the brain, the gate-keeping function of the blood–brain barrier, a high lipid content, vulnerable neuronal subpopulations, and glutamatergic neurotransmission all make the brain particularly vulnerable against mitochondrial dysfunction, oxidative stress, and excitotoxicity. In fact, toxic metabolites in OADs are thought to cause secondary impairment of energy metabolism; some of these toxic metabolites are trapped in the brain. In contrast to cerebral OADs, patients with classical OADs have an increased risk of multiorgan dysfunction. The lack of the anaplerotic propionate pathway, synergistic inhibition of energy metabolism by toxic metabolites, and multiple oxidative phosphorylation (OXPHOS) deficiency may best explain the involvement of organs with a high energy demand. Intriguingly, late-onset organ dysfunction may manifest even under metabolically stable conditions. This might be explained by chronic mitochondrial DNA depletion, increased production of reactive oxygen species, and altered gene expression due to histone modification. In conclusion, pathomechanisms underlying the acute disease manifestation in OADs, with a particular focus on the brain, are partially understood. More work is required to predict the risk and to elucidate the mechanism of late-onset organ dysfunction, extracerebral disease manifestation, and tumorigenesis.

Keywords

Premature Ovarian Failure Metabolic Decompensation Glutaric Aciduria Type Canavan Disease Organic Aciduria 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

BBB

Blood–brain barrier

mtDNA

Mitochondrial DNA

OAD(s)

organic aciduria(s)

ROS

Reactive oxygen species

TCA

Tricarboxylic acid cycle

Notes

Acknowledgements and funding

Cited studies conducted by the Heidelberg team are supported by grants from the German Research Community (to S. W. S.), Kindness for Kids Foundation, Munich, Germany (to SK), and the European Union(project E-IMD) in the framework of the Health Programme 2008–2013 (to SK). The authors declare no conflict of interest and confirm independence from the sponsors; the content of the article has not been influenced by the sponsors.

Conflict of interest

None.

References

  1. Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98:641–653PubMedCrossRefGoogle Scholar
  2. Baumgartner D, Scholl-Bürgi S, Sass JO et al (2007) Prolonged QTc intervals and decreased left ventricular contractility in patients with propionic acidema. J Pediatr 150:192–197PubMedCrossRefGoogle Scholar
  3. Bayley JP, Devilee P (2010) Warburg tumours and the mechanism of mitochondrial tumour suppressor genes. Barking up at the right tree? Curr Opin Genet Dev 20:324–329PubMedCrossRefGoogle Scholar
  4. Baysal BE, Ferrell RE, Willett-Brozick JE et al (2000) Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287:848–851PubMedCrossRefGoogle Scholar
  5. Braissant O (2012) Creatine and guanidinoacetate transport at blood–brain and blood-cerebrospinal fluid barriers. J Inherit Metab Dis 35:655–664PubMedCrossRefGoogle Scholar
  6. Brock M, Buckel W (2004) On the mechanism of action of the antifungal agent propionate. Propionyl-CoA inhibits glucose metabolism in Aspergillus nidulans. Eur J Biochem 271:3227–3241PubMedCrossRefGoogle Scholar
  7. Brunengraber H, Roe CR (2006) Anaplerotic molecules: current and future. J Inherit Metab Dis 29:327–331PubMedCrossRefGoogle Scholar
  8. Burlina AP, Danieli D, Malfa F et al (2012) Glutaric aciduria type I and glioma: first report in a young adult patient. J Inherit Metab Dis 35(Suppl 1):S58, abstractGoogle Scholar
  9. Chandler RJ, Venditti CP (2012) Pre-clinical efficacy and dosing of an AAV8 vector expressing human methylmalonyl-CoA mutase in a murine model of methylmalonic acidemia (MMA). Mol Genet Metab 107:617–619PubMedCrossRefGoogle Scholar
  10. Chandler RJ, Zerfas PM, Shanske S et al (2009) Mitochondrial dysfunction in mut methylmalonic acidemia. FASEB J 23:1252–1261PubMedCrossRefGoogle Scholar
  11. Chapman KA, Summar ML, Enns GM (2012) Propionic acidemia: to liver transplant or not to liver transplant? Pediatr Transpl 16:209–210CrossRefGoogle Scholar
  12. Cheema-Dhadli S, Leznoff CC, Halperin ML (1975) Effect of 2-methylcitrate on citrate metabolism: implications for the management of patients with propionic acidemia and methylmalonic aciduria. Pediatr Res 9:905–908PubMedGoogle Scholar
  13. Chowdbury R, Yeoh KK, Tian YM et al (2012) The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep 12:463–469CrossRefGoogle Scholar
  14. Cosson MA, Touati G, Lacaille F et al (2008) Liver hepatoblastoma and multiple OXPHOS deficiency in the follow-up of a patient with methylmalonic aciduria. Mol Genet Metab 95:107–109PubMedCrossRefGoogle Scholar
  15. Coude FX, Sweetman L, Nyhan WL (1979) Inhibition of propionyl-coenzyme A of N-acetylglutamate synthetase in rat liver mitochondria. A possible explanation for hyperammonemia in propionic and methylmalonic acidemia. J Clin Invest 64:1544–1551PubMedCrossRefGoogle Scholar
  16. Dang L, White DW, Gross S et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–744PubMedCrossRefGoogle Scholar
  17. Danhauser K, Sauer SW, Haack TB et al (2012) DHTKD1 mutations cause 2-aminoadipic and 2-oxoadipic aciduria. Am J Hum Genet 91:1082–1087PubMedCrossRefGoogle Scholar
  18. Davison JE, Davies NP, Wilson M et al (2011) MR spectroscopy-based brain metabolite profiling in propionic acidaemia: metabolic changes in the basal ganglia during acute decompensation and effect of liver transplantation. Orphanet J Rare Dis 6:19PubMedCrossRefGoogle Scholar
  19. De Keyzer Y, Valayannopoulos V, Benoist JF et al (2009) Multiple OXPHOS deficiency in liver, kidney, heart, and skeletal muscle of patients with methylmalonic aciduria and propionic aciduria. Pediatr Res 66:91–95PubMedCrossRefGoogle Scholar
  20. Dewar D, Underhill SM, Goldberg MP (2003) Oligodendrocytes and ischemic brain injury. J Cereb Blood Flow Metab 23:263–274PubMedCrossRefGoogle Scholar
  21. Di Lisa F, Menabo R, Barbato R, Siliprandi N (1994) Contrasting effects of propionate and propionyl-L-carnitine on energy-linked processes in ischemic hearts. Am J Physiol 267:H455–461PubMedGoogle Scholar
  22. Elpeleg O, Miller C, Hershkovitz E et al (2005) Deficiency of the ADP-forming succinyl-CoA synthase activity is associated with encephalomyopathy and mitochondrial DNA depletion. Am J Hum Genet 76:1081–1086PubMedCrossRefGoogle Scholar
  23. Harting I, Neumaier-Probst E, Seitz A et al (2009) Dynamic changes of striatal and extrastriatal abnormalities in glutaric aciduria type I. Brain 132:1764–1782PubMedCrossRefGoogle Scholar
  24. Hassel B, Brathe A, Petersen D (2002) Cerebral dicarboxylate transport and metabolism studied with isotopically labelled fumarate, malate and malonate. J Neurochem 82:410–419PubMedCrossRefGoogle Scholar
  25. Hayasaka K, Metoki K, Satoh T et al (1982) Comparison of cytosolic and mitochondrial enzyme alterations in the livers of propionic and methylmalonic acidemia: a reduction of cytochrome c oxidase activity. Tohoku J Exp Med 137:329–334PubMedCrossRefGoogle Scholar
  26. Heringer J, Boy NPS, Ensenauer R et al (2010) Use of guidelines improves the neurological outcome in glutaric aciduria type I. Ann Neurol 68:743–52PubMedCrossRefGoogle Scholar
  27. Hoffmann GF, Kölker S (2010) Protein-dependent inborn errors of metabolism. In: Warrel DA, Cox TM, Firth JD (eds) Oxford Textbook of Medicine, 5th edn. Oxford University Press, Oxford, pp 1559–1595CrossRefGoogle Scholar
  28. Hoffmann GF, Kölker S (2011) Cerebral organic acid disorders and other disorders of lysine catabolism. In: Saudubray JM, van den Berghe G, Walter JH (eds) Inborn Metabolic Diseases, 5th edn. Springer, Berlin, pp 333–347Google Scholar
  29. Hoppel CL, Tandler B, Fujioka H, Riva A (2009) Dynamic organization of mitochondria in human heart and in myocardial disease. Int J Biochem Cell Biol 41:1949–1956PubMedCrossRefGoogle Scholar
  30. Hörster F, Baumgartner MR, Viardot C et al (2007) Long-term outcome in methylmalonic aciduria is influenced by the underlying defect (mut0, mut-, cblA, cblB). Pediatr Res 62:225–230PubMedCrossRefGoogle Scholar
  31. Hörster F, Garbade SF, Zwickler T et al (2009) Prediction of outcome in isolated methylmalonic acidurias: combined use of clinical and biochemical parameters. J Inherit Metab Dis 32:630–639PubMedCrossRefGoogle Scholar
  32. Kaelin WG Jr (2009) SDH5 mutations and familial paraganglioma: somewhere Warburg is smiling. Cancer Cell 16:180–182PubMedCrossRefGoogle Scholar
  33. Kasahara M, Sakamoto S, Kanazawa H et al (2012) Living-donor liver transplantation for propionic academia. Pediatr Transplant 16:230–234PubMedCrossRefGoogle Scholar
  34. Koeller DM, Woontner M, Crnic LS et al (2002) Biochemical, pathologic and behavioral analysis of a mouse model of glutaric academia type I. Hum Mol Genet 11:347–357PubMedCrossRefGoogle Scholar
  35. Kölker S, Köhr G, Ahlemeyer B et al (2002) Ca2+ and Na+ dependence Of 3-hydroxyglutarate-induced excitotoxicity in primary neuronal cultures from chick embryo telencephalons. Pediatr Res 52:199–206PubMedGoogle Scholar
  36. Kölker S, Schwab M, Hörster F et al (2003) Methylmalonic acid, a biochemical hallmark of methylmalonic aciduria but no inhibitor of mitochondrial respiratory chain. J Biol Chem 278:47388–47393PubMedCrossRefGoogle Scholar
  37. Kölker S, Koeller DM, Okun JG, Hoffmann GF (2004) Pathomechanisms of neurodegeneration in glutaryl-CoA dehydrogenase deficiency. Ann Neurol 55:7–12PubMedCrossRefGoogle Scholar
  38. Kölker S, Sauer SW, Surtees RA, Leonard JV (2006a) The aetiology of neurological complications of organic acidaemias—A role for the blood–brain barrier. J Inherit Metab Dis 29:701–704CrossRefGoogle Scholar
  39. Kölker S, Garbade SF, Greenberg CR et al (2006b) Natural history, outcome and therapeutic efficacy in children and adults with glutaryl-CoA dehydrogenase deficiency. Pediatr Res 59:840–847CrossRefGoogle Scholar
  40. Kölker S, Christensen E, Leonard JV et al (2011) Diagnosis and management of glutaric aciduria type I - revised recommendations. J Inherit Metab Dis 34:677–94PubMedCrossRefGoogle Scholar
  41. Kölker S, Boy SP, Heringer J et al (2012) Complementary dietary treatment using lysine-free, arginine-fortified amino acid supplements in glutaric aciduria type I—a decade of experience. Mol Genet Metab 107:72–80PubMedCrossRefGoogle Scholar
  42. Komatsuzaki S, Sakamoto O, Fuse N, Uematsu M, Matsubara Y, Ohura T (2012) Clinical reasoning: a young man with progressive subcortical lesions and optic nerve atrophy. Neurology 79:e63–68PubMedCrossRefGoogle Scholar
  43. Kossoff EH, Zupec-Kania BA, Amark PE et al (2009) Optimal clinical management of children receiving the ketogenic diet: recommendations of the International Ketogenic Diet Study Group. Epilepsia 50:304–317PubMedCrossRefGoogle Scholar
  44. Krähenbühl S, Chang M, Brass EP, Hoppel CL (1991) Decreased activities of ubiquinol:ferricytochrome c oxidoreductase (complex III) and ferrocytochrome c oxygen oxidoreductase (complex IV) in liver mitochondria from rats with hydroxycobalamin[c-lactam]-induced methylmalonic aciduria. J Biol Chem 266:20998–21003PubMedGoogle Scholar
  45. Kranendijk M, Struys EA, Salomons GS, van der Knaap MS, Jakobs C (2012a) Progress in understanding D-2-hydroxyglutaric acidurias. J Inherit Metab Dis 35:571–587CrossRefGoogle Scholar
  46. Kranendijk M, Struys EA, van Schaftingen E et al (2012b) IDH2 mutations in patients with D-2-hydroxyglutaric aciduria. Science 330:336CrossRefGoogle Scholar
  47. Külkens S, Harting I, Sauer S et al (2005) Late-onset neurologic disease in glutaryl-CoA dehydrogenase deficiency. Neurology 64:2142–2144PubMedCrossRefGoogle Scholar
  48. Kyllerman M, Skjeldal O, Christensen E et al (2004) Long-term follow-up, neurological outcome and survival rate in 28 Nordic patients with glutaric aciduria type 1. Eur J Paediatr Neurol 8:121–129PubMedCrossRefGoogle Scholar
  49. Lamp J, Keyser B, Koeller DM, Ullrich K, Braulke T, Mühlhausen C (2011) Glutaric aciduria type 1 metabolites impair the succinate transport from astrocytic to neuronal cells. J Biol Chem 285:17777–17784CrossRefGoogle Scholar
  50. Marquard J, el Scheich T, Klee D et al (2011) Chronic pancreatitis in branched-chain organic acidurias—a case of methylmalonic aciduria and an overview of the literature. Eur J Pediatr 170:241–245PubMedCrossRefGoogle Scholar
  51. Meyburg J, Hoffmann GF (2005) Liver transplantation for inborn errors of metabolism. Transplantation 80(Suppl 1):S135–137PubMedCrossRefGoogle Scholar
  52. Mirandola SR, Melo DR, Schuck PF, Ferreira GC, Wajner M, Castilho RF (2008) Methylmalonate inhibits succinate-supported oxygen consumption by interfering with mitochondrial succinate uptake. J Inherit Metab Dis 31:44–54PubMedCrossRefGoogle Scholar
  53. Mitchell IJ, Cooper AJ, Griffiths MR (1999) The selective vulnerability of striatopallidal neurons. Prog Neurobiol 59:691–719PubMedCrossRefGoogle Scholar
  54. Mitchell GA, Gauthier N, Lesimple A, Wang SP, Mamer O, Qureshi I (2008) Hereditary and acquired diseases of acyl-coenzyme A metabolism. Mol Genet Metab 94:4–15PubMedCrossRefGoogle Scholar
  55. Morath MA, Okun JG, Müller IB et al (2008) Neurodegeneration and chronic renal failure in methylmalonic aciduria—a pathophysiological approach. J Inherit Metab Dis 31:35–43PubMedCrossRefGoogle Scholar
  56. Moroni I, Bugiani M, D’Incerti L et al (2004) L-2-hydroxyglutaric aciduria and brain malignant tumours: a predisposing condition ? Neurology 62:1882–1884PubMedCrossRefGoogle Scholar
  57. Neumaier-Probst E, Harting I, Seitz A, Ding C, Kölker S (2004) Neuroradiological findings in glutaric aciduria type I (glutaryl-CoA dehydrogenase deficiency. J Inherit Metab Dis 27:869–876PubMedCrossRefGoogle Scholar
  58. Nguyen NHT, Morland C, Gonzalez SV et al (2007) Propionate increases neuronal histone acetylation, but is metabolized oxidatively via glia. Relevance for propionic acidemia. J Neurochem 101:806–814PubMedCrossRefGoogle Scholar
  59. Nyhan WL, Barshop BA, Ozand PT (2005a) Propionic acidemia. In: Nyhan WL, Barshop BA, Ozand PT (eds) Atlas of metabolic diseases, 2nd edn. Hodder Education, London, pp 8–17Google Scholar
  60. Nyhan WL, Barshop BA, Ozand PT (2005b) Methylmalonic acidemia. In: Nyhan WL, Barshop BA, Ozand PT (eds) Atlas of metabolic diseases, 2nd edn. Hodder Education, London, pp 18–29Google Scholar
  61. O’Shea CJ, Sloan JL, Wiggs EA et al (2012) Neurocognitive phenotype of isolated methylmalonic aciduria. Pediatrics 129:e1541PubMedCrossRefGoogle Scholar
  62. Oberholzer VG, Levin B, Burgess A, Young WF (1967) Methylmalonic aciduria. An inborn error of metabolism leading to chronic metabolic acidosis. Arch Dis Child 42:482–504CrossRefGoogle Scholar
  63. Ohtsuki S (2004) New aspects of the blood–brain barrier transporters: its physiological roles in the central nervous system. Biol Pharm Bull 27:1489–1496PubMedCrossRefGoogle Scholar
  64. Okun JG, Hörster F, Farkas LM et al (2002) Neurodegeneration in methylmalonic aciduria involves inhibition of complex II and the tricarboxylic acid cycle, and synergistically acting excitotoxicity. J Biol Chem 277:14674–14680PubMedGoogle Scholar
  65. Ostergaard E, Hansen FJ, Sorensen N et al (2007) Mitochondrial encephalomyopathy with elevated methylmalonic acid is caused by SUCLA2 mutations. Brain 130:853–861PubMedCrossRefGoogle Scholar
  66. Pardridge WM (1998) Blood–brain barrier carrier-mediated transport and brain metabolism of amino acids. Neurochem Res 23:635–644PubMedCrossRefGoogle Scholar
  67. Pearl PL, Gibson KM, Acosta MT et al (2003) Clinical spectrum of succinic semialdehyde dehydrogenase deficiency. Neurology 60:1413–1417PubMedCrossRefGoogle Scholar
  68. Pellerin L, Magistretti PJ (2012) Sweet sixteen for ANLS. J Cereb Blood Flow Metab 32:1152–1566PubMedCrossRefGoogle Scholar
  69. Pena L, Franks J, Chapman KA et al (2011) Natural history of propionic acidemia. Mol Genet Metab 105:5–9PubMedCrossRefGoogle Scholar
  70. Prada CE, Al Jasmi F, Kirk EP et al (2011) Cardiac disease in methylmalonic acidemia. J Pediatr 159:862–864PubMedCrossRefGoogle Scholar
  71. Reitman ZJ, Yan H (2010) Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J Natl Cancer Inst 102:932–941PubMedCrossRefGoogle Scholar
  72. Romano S, Valayannopoulos V, Touati G et al (2010) Cardiomyopathies in propionic aciduria are reversible after liver transplantation. J Pediatr 156:128–134PubMedCrossRefGoogle Scholar
  73. Rothman SM, Olney JW (1995) Excitotoxicity and the NMDA receptor—still lethal after eight years. Trends Neurosci 18:57–58PubMedCrossRefGoogle Scholar
  74. Sauer SW, Okun JG, Schwab MA et al (2005) Bioenergetics in glutaryl-coenzyme A dehydrogenase deficiency, a role for glutaryl-coenzyme A. J Biol Chem 280:21830–21836PubMedCrossRefGoogle Scholar
  75. Sauer SW, Okun JG, Fricker G et al (2006) Intracerebral accumulation of glutaric and 3-hydroxyglutaric acids secondary to limited flux across the blood–brain barrier constitute a biochemical risk factor for neurodegeneration in glutaryl-CoA dehydrogenase deficiency. J Neurochem 97:899–910PubMedCrossRefGoogle Scholar
  76. Sauer SW, Okun JG, Hoffmann GF, Kölker S, Morath MA (2008) Impact of short- and medium-chain organic acids, acylcarnitines, and acyl-CoAs on mitochondrial energy metabolism. Biochim Biophys Acta 1777:1276–1282PubMedCrossRefGoogle Scholar
  77. Sauer SW, Opp S, Haarmann A, Okun JG, Kölker S, Morath MA (2010a) Long-term exposure of human proximal tubule cells to hydroxycobalamin[c-lactam] as a possible model to study renal disease in methylmalonic acidurias. J Inherit Metab Dis 32:720–727CrossRefGoogle Scholar
  78. Sauer SW, Opp S, Mahringer A et al (2010b) Glutaric aciduria type I and methylmalonic aciduria: stimulation of cerebral import and export of accumulating neurotoxic dicarboxylic acids in in vitro models of the blood–brain barrier and the choroid plexus. Biochem Biophys Acta 1802:551–560Google Scholar
  79. Sauer SW, Opp S, Hoffmann GF, Koeller DM, Okun JG, Kölker S (2011) Therapeutic modulation of cerebral L-lysine metabolism in a mouse model for glutaric aciduria type I. Brain 134:157–70PubMedCrossRefGoogle Scholar
  80. Schousboe A, Westergaard N, Waagepetersen HS, Larsson OM, Barken IJ, Sonnewald U (1997) Trafficking between glia and neurons of TCA cycle intermediates and related metabolites. Glia 21:99–105PubMedCrossRefGoogle Scholar
  81. Schwab MA, Sauer SW, Okun JG et al (2006) Secondary mitochondrial dysfunction in propionic aciduria: a pathogenic role for endogenous mitochondrial toxins. Biochem J 398:107–112PubMedCrossRefGoogle Scholar
  82. Segel R, Anikster Y, Zevin S et al (2011) A safety trial of high dose glyceryl triacetate for Canavan disease. Mol Genet Metab 103:203–206PubMedCrossRefGoogle Scholar
  83. Sokoloff L (1960) The metabolism of the central nervous system in vivo. In: Field J, Magoun HW, Hall VE (eds) Handbook of Physiology, Sect 1, vol II. Raven, New York, pp 161–168Google Scholar
  84. Steenweg ME, Salomons GS, Yapici Z et al (2009) L-2-hydroxyglutaric aciduria: pattern of MR imaging abnormalities in 56 patients. Radiology 251:856–865PubMedCrossRefGoogle Scholar
  85. Steenweg ME, Jakobs C, Errami A et al (2010) Am overview on L-2-hydroxyglutarate dehydrogenase gene variants (L2HGDH): a genotype-phenotype study. Hum Mutat 31:380–390PubMedCrossRefGoogle Scholar
  86. Strauss KA, Donnelly P, Wintermark M (2010) Cerebral haemodynamics in patients with glutaryl-coenzyme A dehydrogenase deficiency. Brain 133:76–92PubMedCrossRefGoogle Scholar
  87. Strauss KA, Brumbaugh J, Duffy A et al (2011) Safety, efficacy and physiological actions of a lysine-free, arginine-rich formula to treat glutaryl-CoA dehydrogenase deficiency: focus on cerebral amino acid influx. Mol Genet Metab 104:93–106PubMedCrossRefGoogle Scholar
  88. Sumegi B, Podanyi B, Forgo P, Kover KE (1995) Metabolism of [3-13C]pyruvate and [3-13C]propionate in normal ischaemic rat heart in vivo: 1H- and 13C-NMR studies. Biochem J 312:75–61PubMedGoogle Scholar
  89. Sutton VR, Chapman KA, Gropman AL et al (2012) Chronic management and health supervision of individuals with propionic acidemia. Mol Genet Metab 105:26–33PubMedCrossRefGoogle Scholar
  90. Topcu M, Aydin OF, Yalcinkaya C et al (2005) L-2-hydroxyglutaric aciduria: a report of 29 patients. Turk J Pediatr 47:1–7PubMedGoogle Scholar
  91. Traber G, Baumgartner MR, Schwarz U, Pangalu A, Donath MY, Landau K (2011) Subacute bilateral visual loss in methylmalonic acidemia. J Neuroophthalmol 31:344–346PubMedCrossRefGoogle Scholar
  92. Wajner M, Goodmann SI (2011) Disruption of mitochondrial homeostasis in organic acidurias: insights from human and animal studies. J Bioenerg Biomembr 43:31–38PubMedCrossRefGoogle Scholar
  93. Williams Z, Hurley PE, Altiparmak UE et al (2009) Late onset optic neuropathy in methymalonic and propionic acidemia. Am J Ophthalmol 147:929–933PubMedCrossRefGoogle Scholar
  94. Xu W, Yang H, Liu Y et al (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30PubMedCrossRefGoogle Scholar
  95. Yodoya E (2006) Functional and molecular identification of sodium-coupled dicarboxylate transporters in rat primary cultured cerebral astrocytes and neurons. J Neurochem 97:162–173PubMedCrossRefGoogle Scholar
  96. Zinnanti WJ, Lazovic J, Housman C et al (2007) Mechanism of age-dependent susceptibility and novel treatment strategy in glutaric acidemia type I. J Clin Invest 117:3258–3270PubMedCrossRefGoogle Scholar

Copyright information

© SSIEM and Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Stefan Kölker
    • 1
  • Peter Burgard
    • 1
  • Sven W. Sauer
    • 1
  • Jürgen G. Okun
    • 1
  1. 1.Department of General Pediatrics, Division of Inherited Metabolic DiseasesCentre for Child and Adolescent Medicine, Clinic I, University Hospital HeidelbergHeidelbergGermany

Personalised recommendations