Journal of Inherited Metabolic Disease

, Volume 36, Issue 3, pp 427–434 | Cite as

Metabolite proofreading, a neglected aspect of intermediary metabolism

  • Emile Van Schaftingen
  • Rim Rzem
  • Alexandre Marbaix
  • François Collard
  • Maria Veiga-da-Cunha
  • Carole L. Linster
Original Article

Abstract

Enzymes of intermediary metabolism are less specific than what is usually assumed: they often act on metabolites that are not their ‘true’ substrate, making abnormal metabolites that may be deleterious if they accumulate. Some of these abnormal metabolites are reconverted to normal metabolites by repair enzymes, which play therefore a role akin to the proofreading activities of DNA polymerases and aminoacyl-tRNA synthetases. An illustrative example of such repair enzymes is L-2-hydroxyglutarate dehydrogenase, which eliminates a metabolite abnormally made by a Krebs cycle enzyme. Mutations in L-2-hydroxyglutarate dehydrogenase lead to L-2-hydroxyglutaric aciduria, a leukoencephalopathy. Other examples are the epimerase and the ATP-dependent dehydratase that repair hydrated forms of NADH and NADPH; ethylmalonyl-CoA decarboxylase, which eliminates an abnormal metabolite formed by acetyl-CoA carboxylase, an enzyme of fatty acid synthesis; L-pipecolate oxidase, which repairs a metabolite formed by a side activity of an enzyme of L-proline biosynthesis. Metabolite proofreading enzymes are likely quite common, but most of them are still unidentified. A defect in these enzymes may account for new metabolic disorders.

Abbreviations

L2HGDH

L-2-hydroxyglutarate dehydrogenase gene

D2HGDH

D-2-hydroxyglutarate dehydrogenase gene

Notes

Acknowledgments

MVDC is Chercheur Qualifié of the Belgian FNRS. Alexandre Marbaix is supported by a FRIA fellowship. Work described in this review is supported by the Fonds National de la Recherche Scientifique (FNRS) and the Walloon region (Welbio) (EVS, RR, AM, FC, MVDC), and by the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement 276814 (CLL).

Conflict of interest

None.

References

  1. Acheson SA, Kirkman HN, Wolfenden R (1988) Equilibrium of 5,6-hydration of NADH and mechanism of ATP-dependent dehydration. Biochemistry 27:7371–7375PubMedCrossRefGoogle Scholar
  2. Achouri Y, Rider MH, Schaftingen EV, Robbi M (1997) Cloning, sequencing and expression of rat liver 3-phosphoglycerate dehydrogenase. Biochem J 323:365–370PubMedGoogle Scholar
  3. Achouri Y, Noël G, Vertommen D, Rider MH, Veiga-Da-Cunha M, Van Schaftingen E (2004) Identification of a dehydrogenase acting on D-2-hydroxyglutarate. Biochem J 381:35–42PubMedCrossRefGoogle Scholar
  4. Adler LN, Gomez TA, Clarke SG, Linster CL (2011) A novel GDP-D-glucose phosphorylase involved in quality control of the nucleoside diphosphate sugar pool in Caenorhabditis elegans and mammals. J Biol Chem 286:21511–21523PubMedCrossRefGoogle Scholar
  5. Barth PG, Hoffmann GF, Jaeken J et al (1992) L-2-hydroxyglutaric acidemia: a novel inherited neurometabolic disease. Ann Neurol 32:66–71PubMedCrossRefGoogle Scholar
  6. Cox RP (2001) Errors of lysine metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic & molecular bases of inherited disease. McGraw-Hill, New York, pp 1965–1970Google Scholar
  7. Dang L, White DW, Gross S et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–744PubMedCrossRefGoogle Scholar
  8. Drozak J, Veiga-da-Cunha M, Vertommen D, Stroobant V, Van Schaftingen E (2010) Molecular identification of carnosine synthase as ATP-grasp domain-containing protein 1 (ATPGD1). J Biol Chem 285:9346–9356PubMedCrossRefGoogle Scholar
  9. Duran M, Kamerling JP, Bakker HD, van Gennip AH, Wadman SK (1980) J. L-2-hydroxyglutaric aciduria: an inborn error of metabolism? J Inherit Metab Dis 3:109–112PubMedCrossRefGoogle Scholar
  10. Fiehn O, Barupal DK, Kind T (2011) Extending biochemical databases by metabolomic surveys. J Biol Chem 286:23637–23643PubMedCrossRefGoogle Scholar
  11. Fujii T, Mukaihara M, Agematu H, Tsunekawa H (2002) Biotransformation of L-lysine to L-pipecolic acid catalyzed by L-lysine 6-aminotransferase and pyrroline-5-carboxylate reductase. Biosci Biotechnol Biochem 66:622–627PubMedCrossRefGoogle Scholar
  12. Hanson AD, Pribat A, Waller JC, de Crécy-Lagard V (2009) ‘Unknown’ proteins and ‘orphan’ enzymes: the missing half of the engineering parts list–and how to find it. Biochem J 425:1–11PubMedCrossRefGoogle Scholar
  13. Kalliri E, Mulrooney SB, Hausinger RP (2008) Identification of Escherichia coli YgaF as an L-2-hydroxyglutarate oxidase. J Bacteriol 190:3793–3798PubMedCrossRefGoogle Scholar
  14. Kardon T, Noël G, Vertommen D, Van Schaftingen E (2006) Identification of the gene encoding hydroxyacid-oxoacid transhydrogenase, an enzyme that metabolizes 4-hydroxybutyrate. FEBS Lett 580:2347–2350PubMedCrossRefGoogle Scholar
  15. Kaziro Y, Ochoa S, Warner RC, Chen JY (1961) Metabolism of propionic acid in animal tissues. VIII. Crystalline propionyl carboxylase. J Biol Chem 236:1917–1923PubMedGoogle Scholar
  16. Kölker S, Sauer SW, Surtees RA, Leonard JV (2006) The aetiology of neurological complications of organic acidaemias--a role for the blood–brain barrier. J Inherit Metab Dis 701–704.Google Scholar
  17. Kranendijk M, Struys EA, Van Schaftingen E et al (2010) IDH2 mutations in patients with D-2-hydroxyglutaric aciduria. Science 330:336PubMedCrossRefGoogle Scholar
  18. Kranendijk M, Struys EA, Salomons GS, Van der Knaap MS, Jakobs C (2012) Progress in understanding 2-hydroxyglutaric acidurias. J Inherit Metab Dis 35:571–587PubMedCrossRefGoogle Scholar
  19. Kumon A, Matsuoka Y, Nakajima T, Kakimoto Y, Imaoka N, Sano I (1970) Isolation and indentification of N-alpha-(beta-alanyl)lysine and N-alpha-(gamma-aminobutyryl)lysine from bovine brain. Biochim Biophys Acta 200:170–171PubMedCrossRefGoogle Scholar
  20. Linster CL, Noël G, Stroobant V et al (2011) Ethylmalonyl-CoA decarboxylase, a new enzyme involved in metabolite proofreading. J Biol Chem 286:42992–43003PubMedCrossRefGoogle Scholar
  21. Linster CL, Van Schaftingen E, Hanson AD (2013) Metabolite damage and its repair or pre-emption. Nat Chem Biol. doi:10.1038/NCHEMBIO.1141
  22. Marbaix AY, Noël G, Detroux AM, Vertommen D, Van Schaftingen E, Linster CL (2011) Extremely conserved ATP- or ADP-dependent enzymatic system for nicotinamide nucleotide repair. J Biol Chem 286:41246–41252PubMedCrossRefGoogle Scholar
  23. Matsunaga H, Futakuchi-Tsuchida A, Takahashi M, Ishikawa T, Tsuji M, Ando O (2012) IDH1 and IDH2 have critical roles in 2-hydroxyglutarate production in D-2-hydroxyglutarate dehydrogenase depleted cells. Biochem Biophys Res Commun 423:553–556Google Scholar
  24. Matsuoka M, Nakajima T, Sano I (1969) Identification of alpha-(beta-alanyl)-lysine in rabbit muscle. Biochim Biophys Acta 177:169–171PubMedCrossRefGoogle Scholar
  25. Meinhart JO, Chaykin S, Krebs EG (1956) Enzymatic conversion of a reduced diphosphopyridine nucleotide derivative to reduced diphosphopyridine nucleotide. J Biol Chem 220:821–829PubMedGoogle Scholar
  26. Mills PB, Struys E, Jakobs C et al (2006) Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Nat Med 12:307–309PubMedCrossRefGoogle Scholar
  27. Montgomery JA, Mamer OA, Scriver CR (1983) Metabolism of ethylmalonate to mesaconate in the rat. Evidence for trans-dehydrogenation of methylsuccinate. Biochem J 214:641–644PubMedGoogle Scholar
  28. Oppenheimer NJ, Kaplan NO (1974) Glyceraldehyde-3-phosphate dehydrogenase catalyzed hydration of the 5–6 double bond of reduced beta-nicotinamide adenine dinucleotide (betaNADH). Formation of beta-6-hydroxy-1,4,5,6-tetrahydronicotinamide adenine dinucleotide. Biochemistry 13:4685–4694PubMedCrossRefGoogle Scholar
  29. Prabhakar P, Laboy JI, Wang J et al (1998) Effect of NADH-X on cytosolic glycerol-3-phosphate dehydrogenase. Arch Biochem Biophys 360:195–205PubMedCrossRefGoogle Scholar
  30. Rafter GW, Chaykin S, Krebs EG (1954) The action of glyceraldehyde-3-phosphate dehydrogenase on reduced diphosphopyridine nucleotide. J Biol Chem 208:799–811PubMedGoogle Scholar
  31. Rzem R, Veiga-da-Cunha M, Noel G et al (2004) A gene encoding a putative FAD-dependent L-2-hydroxyglutarate dehydrogenase is mutated in L-2-hydroxyglutaric aciduria. Proc Natl Acad Sci USA 101:16849–16854PubMedCrossRefGoogle Scholar
  32. Rzem R, Van Schaftingen E, Veiga-da-Cunha M (2006) The gene mutated in l-2-hydroxyglutaric aciduria encodes l-2-hydroxyglutarate dehydrogenase. Biochimie 88:113–116PubMedCrossRefGoogle Scholar
  33. Rzem R, Vincent MF, Van Schaftingen E, Veiga-da-Cunha M (2007) L-2-hydroxyglutaric aciduria, a defect of metabolite repair. J Inherit Metab Dis 30:681–689PubMedCrossRefGoogle Scholar
  34. Sacksteder KA, Biery BJ, Morrell JC et al (2000) Identification of the alpha-aminoadipic semialdehyde synthase gene, which is defective in familial hyperlysinemia. Am J Hum Genet 66:1736–1743PubMedCrossRefGoogle Scholar
  35. Shumilin IA, Cymborowski M, Chertihin O et al (2012) Identification of unknown protein function using metabolite cocktail screening. Structure 20:1715–1725PubMedCrossRefGoogle Scholar
  36. Struys EA, Verhoeven NM, Ten Brink HJ et al (2005a) Kinetic characterization of human hydroxyacid-oxoacid transhydrogenase: relevance to D-2-hydroxyglutaric and gamma-hydroxybutyric acidurias. J Inherit Metab Dis 28:921–930PubMedCrossRefGoogle Scholar
  37. Struys EA, Salomons GS, Achouri Y et al (2005b) Mutations in the D-2-hydroxyglutarate dehydrogenase gene cause D-2-hydroxyglutaric aciduria. Am J Hum Genet 76:358–360PubMedCrossRefGoogle Scholar
  38. Struys EA, Gibson KM, Jakobs C (2007) Novel insights into L-2-hydroxyglutaric aciduria: mass isotopomer studies reveal 2-oxoglutaric acid as the metabolic precursor of L-2-hydroxyglutaric acid. J Inherit Metab Dis 30:690–693PubMedCrossRefGoogle Scholar
  39. Struys EA, Jakobs C (2010) Metabolism of lysine in alpha-aminoadipic semialdehyde dehydrogenase-deficient fibroblasts: evidence for an alternative pathway of pipecolic acid formation. FEBS Lett 584:181–186PubMedCrossRefGoogle Scholar
  40. Topçu M, Jobard F, Halliez S et al (2004) L-2-Hydroxyglutaric aciduria: identification of a mutant gene C14orf160, localized on chromosome 14q22.1. Hum Mol Genet 13:2803–2811Google Scholar
  41. Van Schaftingen E, Rzem R, Veiga-da-Cunha M (2009) L-2-Hydroxyglutaric aciduria, a disorder of metabolite repair. J Inherit Metab Dis 32:135–142PubMedCrossRefGoogle Scholar
  42. Waite M, Wakil SJ (1962) Studies on the mechanism of fatty acid synthesis. XII. Acetyl coenzyme A carboxylase. J Biol Chem 237:2750–2757PubMedGoogle Scholar
  43. Ward PS, Cross JR, Lu C et al (2012) Identification of additional IDH mutations associated with oncometabolite R(−)-2-hydroxyglutarate production. Oncogene 31:2491–2498PubMedCrossRefGoogle Scholar
  44. Ward PS, Patel J, Wise DR et al (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17:225–234PubMedCrossRefGoogle Scholar
  45. Weil-Malherbe H (1937) The oxidation of l(−)α-hydroxyglutaric acid in animal tissues. Biochem J 31:2080–2094PubMedGoogle Scholar
  46. Xu W, Yang H, Liu Y et al (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30PubMedCrossRefGoogle Scholar
  47. Yoshida A, Dave V (1975) Inhibition of NADP-dependent dehydrogenases by modified products of NADPH. Arch Biochem Biophys 169:298–303PubMedCrossRefGoogle Scholar
  48. Zhao G, Winkler ME (1996) A novel alpha-ketoglutarate reductase activity of the serA-encoded 3-phosphoglycerate dehydrogenase of Escherichia coli K-12 and its possible implications for human 2-hydroxyglutaric aciduria. J Bacteriol 178:232–239PubMedGoogle Scholar

Copyright information

© SSIEM and Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Emile Van Schaftingen
    • 1
  • Rim Rzem
    • 1
  • Alexandre Marbaix
    • 1
  • François Collard
    • 1
  • Maria Veiga-da-Cunha
    • 1
  • Carole L. Linster
    • 2
  1. 1.Welbio and de Duve InstituteUniversité catholique de LouvainBrusselsBelgium
  2. 2.Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch-sur-AlzetteLuxembourg

Personalised recommendations