Journal of Inherited Metabolic Disease

, Volume 36, Issue 5, pp 841–847 | Cite as

Protein expression profiles in patients carrying NFU1 mutations. Contribution to the pathophysiology of the disease

  • Xènia Ferrer-Cortès
  • Aida Font
  • Núria Bujan
  • Aleix Navarro-Sastre
  • Leslie Matalonga
  • José Antonio Arranz
  • Encarnació Riudor
  • Mireia del Toro
  • Angels Garcia-Cazorla
  • Jaume Campistol
  • Paz Briones
  • Antonia Ribes
  • Frederic Tort
Original Article

Abstract

Cofactor disorders of mitochondrial energy metabolism are a heterogeneous group of diseases with a wide variety of clinical symptoms, particular metabolic profiles and variable enzymatic defects. Mutations in NFU1 were recently identified in patients with fatal encephalopathy displaying a biochemical phenotype consistent with defects in lipoic acid-dependent enzymatic activities and respiratory chain complexes. This discovery highlighted the molecular function of NFU1 as an iron-sulfur(Fe-S) cluster protein necessary for lipoic acid biosynthesis and respiratory chain complexes activities. To understand the pathophysiological mechanisms underlying this disease we have characterized the protein expression profiles of patients carrying NFU1 mutations. Fibroblasts from patients with the p.Gly208Cys mutation showed complete absence of protein-bound lipoic acid and decreased SDHA and SDHB subunits of complex II. In contrast, subunits of other respiratory chain complexes were normal. Protein lipoylation was also decreased in muscle and liver but not in other tissues available (brain, kidney, lung) from NFU1 patients. Although levels of the respiratory chain subunits were unaltered in tissues, BN-PAGE showed an assembly defect for complex II in muscle, consistent with the low enzymatic activity of this complex. This study provides new insights into the molecular bases of NFU1 disease as well as into the regulation of NFU1 protein in human tissues. We demonstrate a ubiquitous expression of NFU1 protein and further suggest that defects in lipoic acid biosynthesis and complex II are the main molecular signature of this disease, particularly in patients carrying the p.Gly208Cys mutation.

Supplementary material

10545_2012_9565_MOESM1_ESM.doc (48 kb)
Supplementary Fig. 1Protein expression analysis in tissues of patients carrying NFU1 mutations and control individuals. (a) Expression of lipoic acid (LA) bound to PDH and KGDH E2 subunits and respiratory chain complexes subunits in NFU1 patients and control tissues from brain, kidney and lung. NDUFA9 (complex I), SDHA and SDHB (complex II), UQCRC2 and UQCRFS1 (complex III) and ATP5A (complex V). GAPDH was used as a loading control. (DOC 48 kb)

References

  1. Abramoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics international 11(7):36–42Google Scholar
  2. Beinert H (2000) Iron-sulfur proteins: ancient structures, still full of surprises. J Biol Inorg Chem 5(1):2–15CrossRefPubMedGoogle Scholar
  3. Booker SJ, Cicchillo RM, Grove TL (2007) Self-sacrifice in radical S-adenosylmethionine proteins. Curr Opin Chem Biol 11(5):543–52CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cameron JM, Janer A, Levandovskiy V et al (2011) Mutations in iron-sulfur cluster scaffold genes NFU1 and BOLA3 cause a fatal deficiency of multiple respiratory chain and 2-oxoacid dehydrogenase enzymes. Am J Hum Genet 89(4):486–95CrossRefPubMedPubMedCentralGoogle Scholar
  5. Feng D, Witkowski A, Smith S (2009) Down-regulation of mitochondrial acyl carrier protein in mammalian cells compromises protein lipoylation and respiratory complex I and results in cell death. J Biol Chem 284(17):11436–45CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ganesh S, Tsurutani N, Suzuki T et al (2003) The Lafora disease gene product laforin interacts with HIRIP5, a phylogenetically conserved protein containing a NifU-like domain. Hum Mol Genet 12(18):2359–68CrossRefPubMedGoogle Scholar
  7. Gelling C, Dawes IW, Richhardt N, Lill R, Mühlenhoff U (2008) Mitochondrial Iba57p is required for Fe/S cluster formation on aconitase and activation of radical SAM enzymes. Mol Cell Biol 28(5):1851–61CrossRefPubMedGoogle Scholar
  8. Haack TB, Rolinski B, Haberberger B, et al (2012) Homozygous missense mutation in BOLA3 causes multiple mitochondrial dysfunctions syndrome in two siblings. J Inherit Metab Dis 5.Google Scholar
  9. Hiltunen JK, Autio KJ, Schonauer MS, Kursu VA, Dieckmann CL, Kastaniotis AJ (2010) Mitochondrial fatty acid synthesis and respiration. Biochim Biophys Acta 1797(6–7):1195–202CrossRefPubMedGoogle Scholar
  10. Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem 74:247–81CrossRefPubMedGoogle Scholar
  11. Lill R, Hoffmann B, Molik S et al (2012) The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. Biochim Biophys Acta 1823(9):1491–508CrossRefPubMedGoogle Scholar
  12. Lorain S, Lécluse Y, Scamps C, Mattéi MG, Lipinski M (2001) Identification of human and mouse HIRA-interacting protein-5 (HIRIP5), two mammalian representatives in a family of phylogenetically conserved proteins with a role in the biogenesis of Fe/S proteins. Biochim Biophys Acta: 1517(3):376–83CrossRefGoogle Scholar
  13. Mayr JA, Zimmermann FA, Fauth C et al (2011a) Lipoic acid synthetase deficiency causes neonatal-onset epilepsy, defective mitochondrial energy metabolism, and glycine elevation. Am J Hum Genet 89(6):792–7CrossRefPubMedPubMedCentralGoogle Scholar
  14. Mayr JA, Freisinger P, Schlachter K, et al (2011) Thiamine pyrophosphokinase deficiency in encephalopathic children with defects in the pyruvate oxidation pathway.:89(6):806-12Google Scholar
  15. Mühlenhoff U, Richter N, Pines O, Pierik AJ, Lill R (2011) Specialized function of yeast Isa1 and Isa2 proteins in the maturation of mitochondrial [4Fe-4S] proteins. J Biol Chem: 286(48):41205–16CrossRefGoogle Scholar
  16. Navarro-Sastre A, Tort F, Stehling O et al (2011) A fatal mitochondrial disease is associated with defective NFU1 function in the maturation of a subset of mitochondrial Fe-S proteins. Am J Hum Genet: 89(5):656–67CrossRefGoogle Scholar
  17. Quinzii CM, Hirano M. Primary and secondary CoQ(10) deficiencies in humans (2011) Biofactors 37(5):361-5.Google Scholar
  18. Rouault TA (2012) Biogenesis of iron-sulfur clusters in mammalian cells: new insights and relevance to human disease. Dis Model Mech 5(2):155–64CrossRefPubMedPubMedCentralGoogle Scholar
  19. Seyda A, Newbold RF, Hudson TJ et al (2001) A novel syndrome affecting multiple mitochondrial functions, located by microcell-mediated transfer to chromosome 2p14-2p13. Am J Hum Genet 68(2):386–96CrossRefPubMedPubMedCentralGoogle Scholar
  20. Sheftel AD, Wilbrecht C, Stehling O et al (2012) The human mitochondrial ISCA1, ISCA2, and IBA57 proteins are required for [4Fe-4S] protein maturation. Mol Biol Cell 23(7):1157–66CrossRefPubMedPubMedCentralGoogle Scholar
  21. Song D, Tu Z, Lee FS (2009) Human ISCA1 interacts with IOP1/NARFL and functions in both cytosolic and mitochondrial iron-sulfur protein biogenesis. J Biol Chem 284(51):35297–307CrossRefPubMedPubMedCentralGoogle Scholar
  22. Wittig I, Braun HP, Schägger H (2006) Blue native PAGE. Nature protocols 1(1):18–28CrossRefGoogle Scholar
  23. Ylikallio E, Suomalainen A (2012) Mechanisms of mitochondrial diseases. Ann Med 44(1):41–59CrossRefPubMedGoogle Scholar

Copyright information

© SSIEM and Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Xènia Ferrer-Cortès
    • 1
  • Aida Font
    • 1
  • Núria Bujan
    • 1
  • Aleix Navarro-Sastre
    • 1
    • 2
  • Leslie Matalonga
    • 1
  • José Antonio Arranz
    • 3
  • Encarnació Riudor
    • 3
  • Mireia del Toro
    • 4
  • Angels Garcia-Cazorla
    • 2
    • 5
  • Jaume Campistol
    • 2
    • 5
  • Paz Briones
    • 1
    • 2
    • 6
  • Antonia Ribes
    • 1
    • 2
    • 7
  • Frederic Tort
    • 1
    • 2
    • 7
  1. 1.Secció d’Errors Congènits del Metabolisme, Servei de Bioquímica i Genètica Molecular, Hospital Clinic, IDIBAPSBarcelonaSpain
  2. 2.CIBER de Enfermedades Raras (CIBERER)BarcelonaSpain
  3. 3.Laboratori de Metabolopaties, Hospital Valld’Hebrón, BarcelonaUniversitat Autònoma de BarcelonaBarcelonaSpain
  4. 4.Servei de Neurología Pediátrica, Hospital Valld’Hebrón, BarcelonaUniversitat Autònoma de BarcelonaBarcelonaSpain
  5. 5.Servei de Neurología, Hospital Sant Joan de DéuBarcelonaSpain
  6. 6.Consejo Superior de Investigaciones Científicas (CSIC)BarcelonaSpain
  7. 7.Secció d’Errors Congènits del Metabolisme -IBC, Servei de Bioquímica i Genètica Molecular, Hospital ClínicBarcelonaSpain

Personalised recommendations