Journal of Inherited Metabolic Disease

, Volume 35, Issue 6, pp 1031–1036

Urinary AASA excretion is elevated in patients with molybdenum cofactor deficiency and isolated sulphite oxidase deficiency

  • Philippa B. Mills
  • Emma J. Footitt
  • Serkan Ceyhan
  • Paula J. Waters
  • Cornelis Jakobs
  • Peter T. Clayton
  • Eduard A. Struys
Original Article

Abstract

Analysis of α-aminoadipic semialdehyde is an important tool in the diagnosis of antiquitin deficiency (pyridoxine-dependent epilepsy). However continuing use of this test has revealed that elevated urinary excretion of α-aminoadipic semialdehyde is not only found in patients with pyridoxine-dependent epilepsy but is also seen in patients with molybdenum cofactor deficiency and isolated sulphite oxidase deficiency. This should be taken into account when interpreting the laboratory data. Sulphite was shown to inhibit α-aminoadipic semialdehyde dehydrogenase in vitro.

References

  1. Calabrese E, Sacco C, Moore G, DiNardi S (1981) Sulfite oxidase deficiency: a high risk factor in SO2, sulfite, and bisulfite toxicity? Med Hypotheses 7:133–145PubMedCrossRefGoogle Scholar
  2. Chang YE (1978) Lysine metabolism in the rat brain: the pipecolic acid-forming pathway. J Neurochem 30:347–354PubMedCrossRefGoogle Scholar
  3. Ciaccio EI (1966) The inhibition of lactate dehydrogenase by 3-acetylpyridine adenine dinucleotide and bisulfite. J Biol Chem 241:1581–1586PubMedGoogle Scholar
  4. Dodt G, Kim DG, Reimann SA, Reuber BE, McCabe K, Gould SJ, Mihalik SJ (2000) L-Pipecolic acid oxidase, a human enzyme essential for the degradation of L-pipecolic acid, is most similar to the monomeric sarcosine oxidases. Biochem J 345:487–494PubMedCrossRefGoogle Scholar
  5. Footitt EJ, Heales SJ, Mills PB, Allen GF, Oppenheim M, Clayton PT (2011) Pyridoxal 5′-phosphate in cerebrospinal fluid; factors affecting concentration. J Inherit Metab Dis 34:529–538PubMedCrossRefGoogle Scholar
  6. Heales S, Hyland K (1989) Determination of quinonoid dihydrobiopterin by high-performance liquid chromatography and electrochemical detection. J Chromatogr 494:77–85PubMedCrossRefGoogle Scholar
  7. Houtkooper RH, Cantó C, Wanders RJ, Auwerx J (2010) The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev 31:194–223PubMedCrossRefGoogle Scholar
  8. Johnson JL, Duran M (2011) Molybdenum cofactor deficiency and isolated sulfite oxidase deficiency. In: Valle D, Beaudet, Vogelstein, Kinzler, Antonarakis Ballabio (eds) The online metabolic & molecular bases of inherited disease, Ch 128Google Scholar
  9. Johnson SL, Smith KW (1976) The interaction of borate and sulphite with pyridine nucleotides. Biochemistry 15:553–559PubMedCrossRefGoogle Scholar
  10. Kasahara T, Kato T (2003) Nutritional biochemistry: A new redox-cofactor vitamin for mammals. Nature 422:832PubMedCrossRefGoogle Scholar
  11. Kimura M, Kanehira K, Yokoi K (1996) Highly sensitive and simple liquid chromatographic determination in plasma of B6 vitamers, especially pyridoxal 5′-phosphate. J Chromatogr A 722:295–301PubMedCrossRefGoogle Scholar
  12. Mills PB, Struys E, Jakobs C, Plecko B, Baxter P, Baumgartner M, Willemsen MA, Omran H, Tacke U, Uhlenberg B, Weschke B, Clayton PT (2006) Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Nat Med 12:307–309PubMedCrossRefGoogle Scholar
  13. Mills PB, Footitt EJ, Mills KA, Tuschl K, Aylett S, Varadkar S, Hemingway C, Marlow N, Rennie J, Baxter P, Dulac O, Nabbout R, Craigen WJ, Schmitt B, Feillet F, Christensen E, De Lonlay P, Pike MG, Hughes MI, Struys EA, Jakobs C, Zuberi SM, Clayton PT (2010) Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency). Brain 133:2148–2159PubMedCrossRefGoogle Scholar
  14. Peduto A, Baumgartner MR, Verhoeven NM, Rabier D, Spada M, Nassogne MC, Poll-The BT, Bonetti G, Jakobs C, Saudubray JM (2004) Hyperpipecolic acidaemia: a diagnostic tool for peroxisomal disorders. Mol Genet Metab 82:224–230PubMedCrossRefGoogle Scholar
  15. Plecko B, Hikel C, Korenke GC, Schmitt B, Baumgartner M, Baumeister F, Jakobs C, Struys E, Erwa W, Stöckler-Ipsiroglu S (2005) Pipecolic acid as a diagnostic marker of pyridoxine-dependent epilepsy. Neuropediatrics 36:200–205PubMedCrossRefGoogle Scholar
  16. Sauer SW, Opp S, Hoffmann GF, Koeller DM, Okun JG, Kölker S (2011) Therapeutic modulation of cerebral L-lysine metabolism in a mouse model for glutaric aciduria type I. Brain 134:157–170PubMedCrossRefGoogle Scholar
  17. Struys EA, Jakobs C (2010) Metabolism of lysine in alpha-aminoadipic semialdehyde dehydrogenase-deficient fibroblasts: evidence for an alternative pathway of pipecolic acid formation. FEBS Lett 584:181–186PubMedCrossRefGoogle Scholar
  18. Tan WH, Eichler FS, Hoda S, Lee MS, Baris H, Hanley CA, Grant PE, Krishnamoorthy KS, Shih VE (2005) Isolated sulfite oxidase deficiency: a case report with a novel mutation and review of the literature. Pediatrics 116:757–766PubMedCrossRefGoogle Scholar
  19. Tang WK, Cheng CH, Fong WP (2002) First purification of the antiquitin protein and demonstration of its enzymatic activity. FEBS Lett 516:183–186PubMedCrossRefGoogle Scholar
  20. Tuazon PT, Johnson SL (1977) Free radical and ionic reaction of bisulfite with reduced nicotinamide adenine dinucleotide and its analogues. Biochemistry 16:1183–1888PubMedCrossRefGoogle Scholar
  21. Veldman A, Santamaria-Araujo JA, Sollazzo S, Pitt J, Gianello R, Yaplito-Lee J, Wong F, Ramsden CA, Reiss J, Cook I, Fairweather J, Schwarz G (2010) Successful treatment of molybdenum cofactor deficiency type A with cPMP. Pediatrics 125:e1249–1254PubMedCrossRefGoogle Scholar
  22. Zhang X, Vincent AS, Halliwell B, Wong KP (2004) A mechanism of sulfite neurotoxicity: direct inhibition of glutamate dehydrogenase. J Biol Chem 279:43035–43045PubMedCrossRefGoogle Scholar

Copyright information

© SSIEM and Springer 2012

Authors and Affiliations

  • Philippa B. Mills
    • 1
  • Emma J. Footitt
    • 1
  • Serkan Ceyhan
    • 2
  • Paula J. Waters
    • 3
  • Cornelis Jakobs
    • 2
  • Peter T. Clayton
    • 1
  • Eduard A. Struys
    • 2
  1. 1.Clinical and Molecular Genetics Unit, Institute of Child HealthUniversity College London with Great Ormond Street Hospital for Children NHS TrustLondonUK
  2. 2.VU University Medical CentreAmsterdamThe Netherlands
  3. 3.Service de Génétique MédicaleUniversité de SherbrookeQuébecCanada

Personalised recommendations