Advertisement

Journal of Inherited Metabolic Disease

, Volume 35, Issue 5, pp 847–857 | Cite as

Combination small molecule PPT1 mimetic and CNS-directed gene therapy as a treatment for infantile neuronal ceroid lipofuscinosis

  • Marie S. Roberts
  • Shannon L. Macauley
  • Andrew M. Wong
  • Denis Yilmas
  • Sarah Hohm
  • Jonathan D. Cooper
  • Mark S. Sands
Original Article

Abstract

Infantile neuronal ceroid lipofuscinosis (INCL) is a profoundly neurodegenerative disease of children caused by a deficiency in the lysosomal enzyme palmitoyl protein thioesterase-1 (PPT1). There is currently no effective therapy for this invariably fatal disease. To date, preclinical experiments using single treatments have resulted in incremental clinical improvements. Therefore, we determined the efficacy of CNS-directed AAV2/5-mediated gene therapy alone and in combination with the systemic delivery of the lysosomotropic PPT1 mimetic phosphocysteamine. Since CNS-directed gene therapy provides relatively high levels of PPT1 activity to specific regions of the brain, we hypothesized that phosphocysteamine would complement that activity in regions expressing subtherapeutic levels of the enzyme. Results indicate that CNS-directed gene therapy alone provided the greatest improvements in biochemical and histological measures as well as motor function and life span. Phosphocysteamine alone resulted in only minor improvements in motor function and no increase in lifespan. Interestingly, phosphocysteamine did not increase the biochemical and histological response when combined with AAV2/5-mediated gene therapy, but it did result in an additional improvement in motor function. These data suggest that a CNS-directed gene therapy approach provides significant clinical benefit, and the addition of the small molecule PPT1 mimetic can further increase that response.

Keywords

Resveratrol Brain Weight Lysosomal Storage Disease CD68 Immunoreactivity Infantile Neuronal Ceroid Lipofuscinosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank Beth Eultgen for her help with animal husbandry. This study was supported by NIH grants (NS043105; MSS), Ruth L. Kirschstein NRSA Fellowship (NS056728; SLM), The Wellcome Trust (GR079491MA; JDC, AMW, DY), Batten Disease Family Association (JDC, AMW, DY), the Batten Disease Support and Research Association (JDC, AMW, DY, SLM, MSS), and the Bletsoe Family (JDC, AMW).

References

  1. Bible E, Gupta P, Hofmann SL, Cooper JD (2004) Regional and cellular neuropathology in the palmitoyl protein thioesterase-1 null mutant mouse model of infantile neuronal ceroid lipofuscinosis. Neurobiol Dis 16:346–359PubMedCrossRefGoogle Scholar
  2. Burger C, Gorbatyuk OS, Velardo MJ, Peden CS, Williams P, Zolotukhin S, Reier PJ, Mandel RJ, Muzyczka N (2004) Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther 10:302–317Google Scholar
  3. Das AK, Becerra CH, Yi W, Lu JY, Siakotos AN, Wisniewski KE, Hofmann SL (1998) Molecular genetics of palmitoyl-protein thioesterase deficiency in the U.S. J Clin Invest 102:361–370PubMedCentralPubMedCrossRefGoogle Scholar
  4. Davidson BL, Stein CS, Heth JA, Martins I, Kotin RM, Derksen, Zabner J, Ghodsi A, Chiorini JA (2000) Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci 97:3428–3432Google Scholar
  5. Galvin N, Vogler C, Levy B, Kovacs A, Griffey M, Sands MS (2008) A murine model of infantile neuronal ceroid lipofuscinosis—ultrastructural evaluation of storage in the central nervous system and viscera. Pediatr Dev Pathol 11:185–192PubMedCentralPubMedCrossRefGoogle Scholar
  6. Griffey M, Bible E, Vogler C, Levy B, Gupta P, Cooper J, Sands MS (2004) Adeno-associated virus 2-mediated gene therapy decreases autofluorescent storage material and increases brain mass in a murine model of infantile neuronal ceroid lipofuscinosis. Neurobiol Dis 16:360–369PubMedCrossRefGoogle Scholar
  7. Griffey M, Macauley SL, Ogilvie JM, Sands MS (2005) AAV2-mediated ocular gene therapy for infantile neuronal ceroid lipofuscinosis. Mol Ther 12:413–421PubMedCrossRefGoogle Scholar
  8. Griffey MA, Wozniak D, Wong M, Bible E, Johnson K, Rothman SM, Wentz AE et al (2006) CNS-directed AAV2-mediated gene therapy ameliorates functional deficits in a murine model of infantile neuronal ceroid lipofuscinosis. Mol Ther 13:538–547PubMedCrossRefGoogle Scholar
  9. Gupta P, Soyombo AA, Atashband A, Wisniewski KE, Shelton JM, Richardson JA, Hammer RE et al (2001) Disruption of PPT1 or PPT2 causes neuronal ceroid lipofuscinosis in knockout mice. Proc Natl Acad Sci USA 98:13566–13571PubMedCentralPubMedCrossRefGoogle Scholar
  10. Haltia M, Rapola J, Santavuori P (1973a) Infantile type of so-called neuronal ceroid-lipofuscinosis. Histological and electron microscopic studies. Acta Neuropathol (Berl) 26:157–170CrossRefGoogle Scholar
  11. Haltia M, Rapola J, Santavuori P, Keranen A (1973b) Infantile type of so-called neuronal ceroid-lipofuscinosis. 2. Morphological and biochemical studies. J Neurol Sci 18:269–285PubMedCrossRefGoogle Scholar
  12. Haltia M, Tyynela J, Baumann M, Henseler M, Sandhoff K (1995) Immunological studies on sphingolipid activator proteins in the neuronal ceroid-lipofuscinoses. Gerontology 41(Suppl 2):239–248PubMedCrossRefGoogle Scholar
  13. Hofmann SL, Peltonen L (2001) The neuronal ceroid lipofuscinosis. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease. New York, McGraw-Hill, pp 3877–3894Google Scholar
  14. Hofmann SL, Das AK, Yi W, Lu JY, Wisniewski KE (1999) Genotype-phenotype correlations in neuronal ceroid lipofuscinosis due to palmitoyl-protein thioesterase deficiency. Mol Genet Metab 66:234–239PubMedCrossRefGoogle Scholar
  15. Hofman IL, van der Wal AC, Dingemans KP, Becker AE (2001) Cardiac pathology in neuronal ceroid lipofuscinoses—a clinicopathologic correlation in three patients. Eur J Paediatr Neurol 5(Suppl A):213–217PubMedCrossRefGoogle Scholar
  16. Kielar C, Maddox L, Bible E, Pontikis CC, Macauley SL, Griffey MA, Wong M et al (2007) Successive neuron loss in the thalamus and cortex in a mouse model of infantile neuronal ceroid lipofuscinosis. Neurobiol Dis 25:150–162PubMedCentralPubMedCrossRefGoogle Scholar
  17. Kielar C, Wishart TM, Palmer A, Dihanich S, Wong AM, Macauley SL, Chan CH et al (2009) Molecular correlates of axonal and synaptic pathology in mouse models of Batten disease. Hum Mol Genet 18:4066–4080PubMedCentralPubMedCrossRefGoogle Scholar
  18. Lu JY, Hofmann SL (2006) Inefficient cleavage of palmitoyl-protein thioesterase (PPT) substrates by aminothiols: implications for treatment of infantile neuronal ceroid lipofuscinosis. J Inherit Metab Dis 29:119–126PubMedCrossRefGoogle Scholar
  19. Macauley SL, Wozniak DF, Kielar C, Tan Y, Cooper JD, Sands MS (2009) Cerebellar pathology and motor deficits in the palmitoyl protein thioesterase 1-deficient mouse. Exp Neurol 217:124–135PubMedCentralPubMedCrossRefGoogle Scholar
  20. Mitchison HM, Hofmann SL, Becerra CH, Munroe PB, Lake BD, Crow YJ, Stephenson JB et al (1998) Mutations in the palmitoyl-protein thioesterase gene (PPT; CLN1) causing juvenile neuronal ceroid lipofuscinosis with granular osmiophilic deposits. Hum Mol Genet 7:291–297PubMedCrossRefGoogle Scholar
  21. Mitchison HM, Lim MJ, Cooper JD (2004) Selectivity and types of cell death in the neuronal ceroid lipofuscinoses. Brain Pathol 14:86–96PubMedCrossRefGoogle Scholar
  22. Passini MA, Macauley SL, Huff MR, Taksir TV, Bu J, Wu IH, Piepenhagen PA et al (2005) AAV vector-mediated correction of brain pathology in a mouse model of Niemann-Pick A disease. Mol Ther 11:754–762PubMedCrossRefGoogle Scholar
  23. Sands MS, Barker J, Vogler C, Levy B, Gwynn B, Galvin N, Birkenmeier EH (1993) Treatment of murine mucopolysaccharidosis type VII in newborns by syngeneic bone marrow transplantation. Lab. Invest. 68:676–686Google Scholar
  24. Tamaki SJ, Jacobs Y, Dohse M, Capela A, Cooper JD, Reitsma M, He D et al (2009) Neuroprotection of host cells by human central nervous system stem cells in a mouse model of infantile neuronal ceroid lipofuscinosis. Cell Stem Cell 5:310–319PubMedCrossRefGoogle Scholar
  25. Vanhanen SL, Sainio K, Lappi M, Santavuori P (1997) EEG and evoked potentials in infantile neuronal ceroid-lipofuscinosis. Dev Med Child Neurol 39:456–463PubMedCrossRefGoogle Scholar
  26. Vesa J, Hellsten E, Verkruyse LA, Camp LA, Rapola J, Santavuori P, Hofmann SL et al (1995) Mutations in the palmitoyl protein thioesterase gene causing infantile neuronal ceroid lipofuscinosis. Nature 376:584–587PubMedCrossRefGoogle Scholar
  27. Wei H, Zhang Z, Saha A, Peng S, Chandra G, Quezado Z, Mukherjee AB (2011) Disruption of adaptive energy metabolism and elevated ribosomal p-S6K1 levels contribute to INCL pathogenesis: partial rescue by resveratrol. Hum Mol Genet 20:1111–1121PubMedCentralPubMedCrossRefGoogle Scholar
  28. Zhang Z, Butler JD, Levin SW, Wisniewski KE, Brooks SS, Mukherjee AB (2001) Lysosomal ceroid depletion by drugs: therapeutic implications for a hereditary neurodegenerative disease of childhood. Nat Med 7:478–484PubMedCrossRefGoogle Scholar

Copyright information

© SSIEM and Springer 2012

Authors and Affiliations

  • Marie S. Roberts
    • 1
  • Shannon L. Macauley
    • 1
  • Andrew M. Wong
    • 2
  • Denis Yilmas
    • 2
  • Sarah Hohm
    • 1
  • Jonathan D. Cooper
    • 2
  • Mark S. Sands
    • 1
  1. 1.Department of Internal MedicineWashington University School of MedicineSt. LouisUSA
  2. 2.Pediatric Storage Disorders Laboratory, Department of Neuroscience and MRC Centre for Neurodegeneration Research, Institute of PsychiatryKing’s College LondonLondonUK

Personalised recommendations