Journal of Inherited Metabolic Disease

, Volume 34, Issue 4, pp 869–878 | Cite as

Oligosaccharyltransferase: the central enzyme of N-linked protein glycosylation

CDG - An Update

Abtract

N-linked glycosylation is one of the most abundant modifications of proteins in eukaryotic organisms. In the central reaction of the pathway, oligosaccharyltransferase (OST), a multimeric complex located at the membrane of the endoplasmic reticulum, transfers a preassembled oligosaccharide to selected asparagine residues within the consensus sequence asparagine-X-serine/threonine. Due to the high substrate specificity of OST, alterations in the biosynthesis of the oligosaccharide substrate result in the hypoglycosylation of many different proteins and a multitude of symptoms observed in the family of congenital disorders of glycosylation (CDG) type I. This review covers our knowledge of human OST and describes enzyme composition. The Stt3 subunit of OST harbors the catalytic center of the enzyme, but the function of the other, highly conserved, subunits are less well defined. Some components seem to be involved in the recognition and utilization of glycosylation sites in specific glycoproteins. Indeed, mutations in the subunit paralogs N33/Tusc3 and IAP do not yield the pleiotropic phenotypes typical for CDG type I but specifically result in nonsyndromic mental retardation, suggesting that the oxidoreductase activity of these subunits is required for glycosylation of a subset of proteins essential for brain development.

References

  1. Aebi M, Bernasconi R, Clerc S, Molinari M (2010) N-glycan structures: recognition and processing in the ER. Trends Biochem Sci 35:74–82PubMedCrossRefGoogle Scholar
  2. Bashyam MD, Bair R, Kim YH, Wang P, Hernandez-Boussard T, Karikari CA, Tibshirani R, Maitra A, Pollack JR (2005) Array-based comparative genomic hybridization identifies localized DNA amplifications and homozygous deletions in pancreatic cancer. Neoplasia 7:556–562PubMedCrossRefGoogle Scholar
  3. Bause E, Legler G (1981) The role of the hydroxy amino acid in the triplet sequence Asn-Xaa-Thr(Ser) for the N-glycosylation step during glycoprotein biosynthesis. Biochem J 195:639–644PubMedGoogle Scholar
  4. Bause E, Breuer W, Peters S (1995) Investigation of the active site of oligosaccharyltransferase from pig liver using synthetic tripeptides as tools. Biochem J312(Pt 3):979–985Google Scholar
  5. Bause E, Wesemann M, Bartoschek A, Breuer W (1997) Epoxyethylglycyl peptides as inhibitors of oligosaccharyltransferase: double-labelling of the active site. Biochem J 322(Pt 1):95–102PubMedGoogle Scholar
  6. Ben-Dor S, Esterman N, Rubin E, Sharon N (2004) Biases and complex patterns in the residues flanking protein N-glycosylation sites. Glycobiology 14:95–101PubMedCrossRefGoogle Scholar
  7. Brewster JL, Martin SL, Toms J, Goss D, Wang K, Zachrone K, Davis A, Carlson G, Hood L, Coffin JD (2000) Deletion of Dad1 in mice induces an apoptosis-associated embryonic death. Genesis 26:271–278PubMedCrossRefGoogle Scholar
  8. Burda P, Aebi M (1999) The dolichol pathway of N-linked glycosylation. Biochim Biophys Acta 1426:239–257PubMedGoogle Scholar
  9. Castro O, Movsichoff F, Parodi AJ (2006) Preferential transfer of the complete glycan is determined by the oligosaccharyltransferase complex and not by the catalytic subunit. Proc Natl Acad Sci USA 103:14756–14760PubMedCrossRefGoogle Scholar
  10. Chen R, Jiang X, Sun D, Han G, Wang F, Ye M, Wang L, Zou H (2009) Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. J Proteome Res 8:651–661PubMedCrossRefGoogle Scholar
  11. Cooke SL, Pole JC, Chin SF, Ellis IO, Caldas C, Edwards PA (2008) High-resolution array CGH clarifies events occurring on 8p in carcinogenesis. BMC Cancer 8:288PubMedCrossRefGoogle Scholar
  12. Crimaudo C, Hortsch M, Gausepohl H, Meyer DI (1987) Human ribophorins I and II: the primary structure and membrane topology of two highly conserved rough endoplasmic reticulum-specific glycoproteins. EMBO J 6:75–82PubMedGoogle Scholar
  13. Dempski RE Jr, Imperiali B (2002) Oligosaccharyl transferase: gatekeeper to the secretory pathway. Curr Opin Chem Biol 6:844–850PubMedCrossRefGoogle Scholar
  14. Fetrow JS, Siew N, Di Gennaro JA, Martinez-Yamout M, Dyson HJ, Skolnick J (2001) Genomic-scale comparison of sequence- and structure-based methods of function prediction: does structure provide additional insight? Protein Sci 10:1005–1014PubMedCrossRefGoogle Scholar
  15. Freeze HH, Aebi M (2005) Altered glycan structures: the molecular basis of congenital disorders of glycosylation. Curr Opin Struct Biol 15:490–498PubMedCrossRefGoogle Scholar
  16. Frickel EM, Riek R, Jelesarov I, Helenius A, Wuthrich K, Ellgaard L (2002) TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. Proc Natl Acad Sci USA 99:1954–1959PubMedCrossRefGoogle Scholar
  17. Fu J, Ren M, Kreibich G (1997) Interactions among subunits of the oligosaccharyltransferase complex. J Biol Chem 272:29687–29692PubMedCrossRefGoogle Scholar
  18. Fu J, Pirozzi G, Sanjay A, Levy R, Chen Y, De Lemos-Chiarandini C, Sabatini D, Kreibich G (2000) Localization of ribophorin II to the endoplasmic reticulum involves both its transmembrane and cytoplasmic domains. Eur J Cell Biol 79:219–228PubMedCrossRefGoogle Scholar
  19. Garshasbi M, Hadavi V, Habibi H, Kahrizi K, Kariminejad R, Behjati F, Tzschach A, Najmabadi H, Ropers HH, Kuss AW (2008) A defect in the TUSC3 gene is associated with autosomal recessive mental retardation. Am J Hum Genet 82:1158–1164PubMedCrossRefGoogle Scholar
  20. Gaynor EC, Te Heesen S, Graham TR, Aebi M, Emr SD (1994) Signal-mediated retrieval of a membrane protein from the Golgi to the ER in yeast. J Cell Biol 127:653–665PubMedCrossRefGoogle Scholar
  21. Ge X, Loh HH, Law PY (2009) mu-Opioid receptor cell surface expression is regulated by its direct interaction with Ribophorin I. Mol Pharmacol 75:1307–1316PubMedCrossRefGoogle Scholar
  22. Gorlich D, Prehn S, Hartmann E, Kalies KU, Rapoport TA (1992) A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation. Cell 71:489–503PubMedCrossRefGoogle Scholar
  23. Hardt B, Aparicio R, Bause E (2000) The oligosaccharyltransferase complex from pig liver: cDNA cloning, expression and functional characterisation. Glycoconj J 17:767–779PubMedCrossRefGoogle Scholar
  24. Hardt B, Aparicio R, Breuer W, Bause E (2001) Analysis of structural signals conferring localisation of pig OST48 to the endoplasmic reticulum. Biol Chem 382:1039–1047PubMedCrossRefGoogle Scholar
  25. Helenius A (1994) How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Mol Biol Cell 5:253–265PubMedGoogle Scholar
  26. Helenius A, Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73:1019–1049PubMedCrossRefGoogle Scholar
  27. Hese K, Otto C, Routier FH, Lehle L (2009) The yeast oligosaccharyltransferase complex can be replaced by STT3 from Leishmania major. Glycobiology 19:160–171PubMedCrossRefGoogle Scholar
  28. Hong NA, Flannery M, Hsieh SN, Cado D, Pedersen R, Winoto A (2000) Mice lacking Dad1, the defender against apoptotic death-1, express abnormal N-linked glycoproteins and undergo increased embryonic apoptosis. Dev Biol 220:76–84PubMedCrossRefGoogle Scholar
  29. Honma K, Iwao-Koizumi K, Takeshita F, Yamamoto Y, Yoshida T, Nishio K, Nagahara S, Kato K, Ochiya T (2008) RPN2 gene confers docetaxel resistance in breast cancer. Nat Med 14:939–948PubMedCrossRefGoogle Scholar
  30. Hulsmeier AJ, Paesold-Burda P, Hennet T (2007) N-glycosylation site occupancy in serum glycoproteins using multiple reaction monitoring liquid chromatography-mass spectrometry. Mol Cell Proteomics 6:2132–2138PubMedCrossRefGoogle Scholar
  31. Igura M, Maita N, Kamishikiryo J, Yamada M, Obita T, Maenaka K, Kohda D (2008) Structure-guided identification of a new catalytic motif of oligosaccharyltransferase. EMBO J 27:234–243PubMedCrossRefGoogle Scholar
  32. Imperiali B, Shannon KL (1991) Differences between Asn-Xaa-Thr-containing peptides: a comparison of solution conformation and substrate behavior with oligosaccharyltransferase. Biochemistry 30:4374–4380PubMedCrossRefGoogle Scholar
  33. Imperiali B, Shannon KL, Rickert KW (1992) Role of peptide conformation in Asparagine-Linked glycosylation. J Am Chem Soc 114:7942–7944CrossRefGoogle Scholar
  34. Izquierdo L, Schulz BL, Rodrigues JA, Guther MLS, Procter JB, Barton GJ, Aebi M, Ferguson MAJ (2009) Distinct donor and acceptor specificities of Trypanosoma brucei oligosaccharyltransferases. EMBO J 28:2650–2661PubMedCrossRefGoogle Scholar
  35. Karaoglu D, Kelleher DJ, Gilmore R (2001) Allosteric regulation provides a molecular mechanism for preferential utilization of the fully assembled dolichol-linked oligosaccharide by the yeast oligosaccharyltransferase. Biochemistry 40:12193–12206PubMedCrossRefGoogle Scholar
  36. Kelleher DJ, Gilmore R (1997) DAD1, the defender against apoptotic cell death, is a subunit of the mammalian oligosaccharyltransferase. Proc Natl Acad Sci USA 94:4994–4999PubMedCrossRefGoogle Scholar
  37. Kelleher DJ, Gilmore R (2006) An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16:47R–62RPubMedCrossRefGoogle Scholar
  38. Kelleher DJ, Kreibich G, Gilmore R (1992) Oligosaccharyltransferase activity is associated with a protein complex composed of ribophorins I and II and a 48 kd protein. Cell 69:55–65PubMedCrossRefGoogle Scholar
  39. Kelleher DJ, Karaoglu D, Mandon EC, Gilmore R (2003) Oligosaccharyltransferase isoforms that contain different catalytic STT3 subunits have distinct enzymatic properties. Mol Cell 12:101–111PubMedCrossRefGoogle Scholar
  40. Kim H, Park H, Montalvo L, Lennarz WJ (2000) Studies on the role of the hydrophobic domain of OST4p in interactions with other subunits of yeast oligosaccharyl transferase. Proc Natl Acad Sci USA 97:1516–1520PubMedCrossRefGoogle Scholar
  41. Kim H, Yan Q, Von Heijne G, Caputo GA, Lennarz WJ (2003) Determination of the membrane topology of Ost4p and its subunit interactions in the oligosaccharyltransferase complex in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 100:7460–7464PubMedCrossRefGoogle Scholar
  42. Kreibich G, Czako-Graham M, Grebenau R, Mok W, Rodriguez-Boulan E, Sabatini DD (1978a) Characterization of the ribosomal binding site in rat liver rough microsomes: ribophorins I and II, two integral membrane proteins related to ribosome binding. J Supramol Struct 8:279–302PubMedCrossRefGoogle Scholar
  43. Kreibich G, Freienstein CM, Pereyra BN, Ulrich BL, Sabatini DD (1978b) Proteins of rough microsomal membranes related to ribosome binding. II. Cross-linking of bound ribosomes to specific membrane proteins exposed at the binding sites. J Cell Biol 77:488–506PubMedCrossRefGoogle Scholar
  44. Kreibich G, Ulrich BL, Sabatini DD (1978c) Proteins of rough microsomal membranes related to ribosome binding. I. Identification of ribophorins I and II, membrane proteins characteristics of rough microsomes. J Cell Biol 77:464–487PubMedCrossRefGoogle Scholar
  45. Li H, Chavan M, Schindelin H, Lennarz WJ, Li HL (2008) Structure of the oligosaccharyl transferase complex at 12 angstrom resolution. Structure 16:432–440PubMedCrossRefGoogle Scholar
  46. MacGrogan D, Levy A, Bova GS, Isaacs WB, Bookstein R (1996) Structure and methylation-associated silencing of a gene within a homozygously deleted region of human chromosome band 8p22. Genomics 35:55–65PubMedCrossRefGoogle Scholar
  47. Makishima T, Nakashima T, Nagata-Kuno K, Fukushima K, Iida H, Sakaguchi M, Ikehara Y, Komiyama S, Nishimoto T (1997) The highly conserved DAD1 protein involved in apoptosis is required for N-linked glycosylation. Genes Cells 2:129–141PubMedCrossRefGoogle Scholar
  48. Marcantonio EE, Amar-Costesec A, Kreibich G (1984) Segregation of the polypeptide translocation apparatus to regions of the endoplasmic reticulum containing ribophorins and ribosomes. II. Rat liver microsomal subfractions contain equimolar amounts of ribophorins and ribosomes. J Cell Biol 99:2254–2259PubMedCrossRefGoogle Scholar
  49. Menetret JF, Neuhof A, Morgan DG, Plath K, Radermacher M, Rapoport TA, Akey CW (2000) The structure of ribosome-channel complexes engaged in protein translocation. Mol Cell 6:1219–1232PubMedCrossRefGoogle Scholar
  50. Miletich JP, Broze GJ Jr (1990) Beta protein C is not glycosylated at asparagine 329. The rate of translation may influence the frequency of usage at asparagine-X-cysteine sites. J Biol Chem 265:11397–11404PubMedGoogle Scholar
  51. Molinari F, Foulquier F, Tarpey PS, Morelle W, Boissel S, Teague J, Edkins S, Futreal PA, Stratton MR, Turner G, Matthijs G, Gecz J, Munnich A, Colleaux L (2008) Oligosaccharyltransferase-subunit mutations in nonsyndromic mental retardation. Am J Hum Genet 82:1150–1157PubMedCrossRefGoogle Scholar
  52. Nakashima T, Sekiguchi T, Kuraoka A, Fukushima K, Shibata Y, Komiyama S, Nishimoto T (1993) Molecular cloning of a human cDNA encoding a novel protein, DAD1, whose defect causes apoptotic cell death in hamster BHK21 cells. Mol Cell Biol 13:6367–6374PubMedGoogle Scholar
  53. Nasab FP, Schulz BL, Gamarro F, Parodi AJ, Aebi M (2008) All in one: leishmania major STT3 proteins substitute for the whole oligosaccharyltransferase complex in Saccharomyces cerevisiae. Mol Biol Cell 19:3758–3768PubMedCrossRefGoogle Scholar
  54. Nilsson I, Kelleher DJ, Miao Y, Shao Y, Kreibich G, Gilmore R, Von Heijne G, Johnson AE (2003) Photocross-linking of nascent chains to the STT3 subunit of the oligosaccharyltransferase complex. J Cell Biol 161:715–725PubMedCrossRefGoogle Scholar
  55. Nishii K, Tsuzuki T, Kumai M, Takeda N, Koga H, Aizawa S, Nishimoto T, Shibata Y (1999) Abnormalities of developmental cell death in Dad1-deficient mice. Genes Cells 4:243–252PubMedCrossRefGoogle Scholar
  56. Parodi AJ (2000) Role of N-oligosaccharide endoplasmic reticulum processing reactions in glycoprotein folding and degradation. Biochem J 348(Pt 1):1–13PubMedCrossRefGoogle Scholar
  57. Pathak R, Hendrickson TL, Imperiali B (1995) Sulfhydryl modification of the yeast Wbp1p inhibits oligosaccharyl transferase activity. Biochemistry 34:4179–4185PubMedCrossRefGoogle Scholar
  58. Paulson JC (1989) Glycoproteins: what are the sugar chains for? Trends Biochem Sci 14:272–276PubMedCrossRefGoogle Scholar
  59. Petrescu AJ, Milac AL, Petrescu SM, Dwek RA, Wormald MR (2004) Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding. Glycobiology 14:103–114PubMedCrossRefGoogle Scholar
  60. Ruiz-Canada C, Kelleher DJ, Gilmore R (2009) Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms. Cell 136:272–283PubMedCrossRefGoogle Scholar
  61. Sanjay A, Fu J, Kreibich G (1998) DAD1 is required for the function and the structural integrity of the oligosaccharyltransferase complex. J Biol Chem 273:26094–26099PubMedCrossRefGoogle Scholar
  62. Schulz BL, Aebi M (2009) Analysis of glycosylation site occupancy reveals a role for OST3p and OST6p in site-specific N-glycosylation efficiency. Mol Cell Proteomics 8:357–364PubMedGoogle Scholar
  63. Schulz BL, Stirnimann CU, Grimshaw JP, Brozzo MS, Fritsch F, Mohorko E, Capitani G, Glockshuber R, Grutter MG, Aebi M (2009) Oxidoreductase activity of oligosaccharyltransferase subunits Ost3p and Ost6p defines site-specific glycosylation efficiency. Proc Natl Acad Sci USA 106:11061–11066PubMedCrossRefGoogle Scholar
  64. Sharma CB, Lehle L, Tanner W (1981) N-Glycosylation of yeast proteins. Characterization of the solubilized oligosaccharyl transferase. Eur J Biochem 116:101–108PubMedCrossRefGoogle Scholar
  65. Shibatani T, David LL, McCormack AL, Frueh K, Skach WR (2005) Proteomic analysis of mammalian oligosaccharyltransferase reveals multiple subcomplexes that contain Sec61, TRAP, and two potential new subunits. Biochemistry 44:5982–5992PubMedCrossRefGoogle Scholar
  66. Silberstein S, Kelleher DJ, Gilmore R (1992) The 48-kDa subunit of the mammalian oligosaccharyltransferase complex is homologous to the essential yeast protein WBP1. J Biol Chem 267:23658–23663PubMedGoogle Scholar
  67. Spirig U, Glavas M, Bodmer D, Reiss G, Burda P, Lippuner V, Te Heesen S, Aebi M (1997) The STT3 protein is a component of the yeast oligosaccharyltransferase complex. Mol Gen Genet 256:628–637PubMedCrossRefGoogle Scholar
  68. Spirig U, Bodmer D, Wacker M, Burda P, Aebi M (2005) The 3.4-kDa OstOST4 protein is required for the assembly of two distinct oligosaccharyltransferase complexes in yeast. Glycobiology 15:1396–1406PubMedCrossRefGoogle Scholar
  69. Surani MA (1979) Glycoprotein synthesis and inhibition of glycosylation by tunicamycin in preimplantation mouse embryos: compaction and trophoblast adhesion. Cell 18:217–227PubMedCrossRefGoogle Scholar
  70. Tai VW, Imperiali B (2001) Substrate specificity of the glycosyl donor for oligosaccharyl transferase. J Org Chem 66:6217–6228PubMedCrossRefGoogle Scholar
  71. Titani K, Kumar S, Takio K, Ericsson LH, Wade RD, Ashida K, Walsh KA, Chopek MW, Sadler JE, Fujikawa K (1986) Amino acid sequence of human von Willebrand factor. Biochemistry 25:3171–3184PubMedCrossRefGoogle Scholar
  72. Vleugels W, Schollen E, Foulquier F, Matthijs G (2009) Screening for OST deficiencies in unsolved CDG-I patients. Biochem Biophys Res Commun 390:769–774PubMedCrossRefGoogle Scholar
  73. Wacker M, Linton D, Hitchen PG, Nita-Lazar M, Haslam SM, North SJ, Panico M, Morris HR, Dell A, Wren BW, Aebi M (2002) N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298:1790–1793PubMedCrossRefGoogle Scholar
  74. Wacker M, Feldman MF, Callewaert N, Kowarik M, Clarke BR, Pohl NL, Hernandez M, Vines ED, Valvano MA, Whitfield C, Aebi M (2006) Substrate specificity of bacterial oligosaccharyltransferase suggests a common transfer mechanism for the bacterial and eukaryotic systems. Proc Natl Acad Sci USA 103:7088–7093PubMedCrossRefGoogle Scholar
  75. Wang L, Dobberstein B (1999) Oligomeric complexes involved in translocation of proteins across the membrane of the endoplasmic reticulum. FEBS Lett 457:316–322PubMedCrossRefGoogle Scholar
  76. Wilson CM, High S (2007) Ribophorin I acts as a substrate-specific facilitator of N-glycosylation. J Cell Sci 120:648–657PubMedCrossRefGoogle Scholar
  77. Wilson CM, Roebuck Q, High S (2008) Ribophorin I regulates substrate delivery to the oligosaccharyltransferase core. Proc Natl Acad Sci USA 105:9534–9539PubMedCrossRefGoogle Scholar
  78. Wormald MR, Dwek RA (1999) Glycoproteins: glycan presentation and protein-fold stability. Structure 7:R155–R160PubMedCrossRefGoogle Scholar
  79. Yan Q, Lennarz WJ (2002) Studies on the function of oligosaccharyl transferase subunits. Stt3p is directly involved in the glycosylation process. J Biol Chem 277:47692–47700PubMedCrossRefGoogle Scholar
  80. Yu YH, Sabatini DD, Kreibich G (1990) Antiribophorin antibodies inhibit the targeting to the ER membrane of ribosomes containing nascent secretory polypeptides. J Cell Biol 111:1335–1342PubMedCrossRefGoogle Scholar
  81. Zapun A, Jakob CA, Thomas DY, Bergeron JJ (1999) Protein folding in a specialized compartment: the endoplasmic reticulum. Structure 7:R173–R182PubMedCrossRefGoogle Scholar
  82. Zhou H, Clapham DE (2009) Mammalian MagT1 and TUSC3 are required for cellular magnesium uptake and vertebrate embryonic development. Proc Natl Acad Sci USA 106:15750–15755PubMedCrossRefGoogle Scholar
  83. Zielinska DF, Gnad F, Wisniewski JR, Mann M (2010) Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141:897–907PubMedCrossRefGoogle Scholar
  84. Zubkov S, Lennarz WJ, Mohanty S (2004) Structural basis for the function of a minimembrane protein subunit of yeast oligosaccharyltransferase. Proc Natl Acad Sci USA 101:3821–3826PubMedCrossRefGoogle Scholar

Copyright information

© SSIEM and Springer 2011

Authors and Affiliations

  • Elisabeth Mohorko
    • 1
  • Rudi Glockshuber
    • 1
  • Markus Aebi
    • 2
  1. 1.Department of BiologyInstitute of Molecular Biology and Biophysics, ETH ZürichZürichSwitzerland
  2. 2.Department of BiologyInstitute of Microbiology, ETH ZürichZürichSwitzerland

Personalised recommendations