Journal of Inherited Metabolic Disease

, Volume 34, Issue 2, pp 529–538 | Cite as

Pyridoxal 5'-phosphate in cerebrospinal fluid; factors affecting concentration

  • Emma J. Footitt
  • Simon J. Heales
  • Philippa B. Mills
  • George F. G. Allen
  • Marcus Oppenheim
  • Peter T. Clayton
Original Article

Abstract

Analysis of pyridoxal 5′-phosphate (PLP) concentration in 256 cerebrospinal fluid (CSF) samples from patients with neurological symptoms showed that the variance is greater than indicated by previous studies. The age-related lower reference limit has been revised to detect inborn errors of metabolism that lead to PLP depletion without a high false positive rate: <30 days, 26 nmol/L; 30 days to 12 months, 14 nmol/L; 1-2 years, 11 nmol/L; >3 years, 10 nmol/L. Inborn errors leading to PLP concentrations below these values include pyridoxine-dependent epilepsy due to antiquitin deficiency, and molybdenum cofactor deficiency that leads to the accumulation of sulfite, a nucleophile capable of reacting with PLP. Low PLP levels were also seen in a group of children with transiently elevated urinary excretion of sulfite and/or sulfocysteine, suggesting that there may be other situations in which sulfite accumulates and inactivates PLP. There was no evidence that seizures or the anticonvulsant drugs prescribed for patients in this study led to significant lowering of CSF PLP. A small proportion of patients receiving L-dopa therapy were found to have a CSF PLP concentration below the appropriate reference range. This may have implications for monitoring and treatment. A positive correlation was seen between the CSF PLP and 5-methyl-tetrahydrofolate (5-MTHF) and tetrahydrobiopterin (BH4) concentrations. All are susceptible to attack by nucleophiles and oxygen-derived free-radicals, and CSF has relatively low concentrations of other molecules that can react with these compounds. Further studies of CSF PLP levels in a wide range of neurological diseases might lead to improved understanding of pathogenesis and possibilities for treatment.

Notes

Competing interest

None declared.

References

  1. Allen GF, Neergheen V, Oppenheim M et al (2010) Pyridoxal 5'-phosphate deficiency causes a loss of aromatic L-amino acid decarboxylase in patients and human neuroblastoma cells, implications for aromatic L-amino acid decarboxylase and vitamin B(6) deficiency states. J Neurochem 114(1):87–96PubMedGoogle Scholar
  2. Apeland T, Mansoor M, Pentieva et al (2003) Fasting and Post-methionine loading concentrations of homocysteine, vitamin B2 and Vitamin B6 in patients on antiepileptic drugs. Clin Chem 49 No 6:1005-Google Scholar
  3. Attilakos A, Papakonstantinou E, Schulpis K et al (2006) Early effect of sodium valproate and carbamazepine monotherapy on homocysteine metabolism in children with epilepsy. Epilepsy Res 71:229–232PubMedCrossRefGoogle Scholar
  4. Bilski P, Li MY, Ehrenshaft M, Daub ME, Chignell CF (2000) Vitamin B6 (pyridoxine) and its derivatives are efficient singlet oxygen quenchers and potential fungal antioxidants. Photochem Photobiol 71:129–34PubMedCrossRefGoogle Scholar
  5. Cambonie G, Bellet H, Houdon L, Vallat C, El Younsi M, Vergnes C (2001) Urinary excretion of free cysteine in critically ill neonates. Acta Paediatr 90(12):1405–10PubMedCrossRefGoogle Scholar
  6. Chiang EP, Smith DE, Selhub J, Dallal G, Wang YC, Roubenoff R (2005). Inflammation causes tissue-specific depletion of vitamin B6. Arthritis Res Ther.;7(6):R1254-62Google Scholar
  7. Clayton PT (2006) B6 responsive disorders: a model of vitamin dependency. J inherit metab dis 29:317–326PubMedCrossRefGoogle Scholar
  8. Duarte S, Sanmarti F, Gonzalez V et al (2008) Cerebrospinal fluid pterins and neurotransmitters in early severe epileptic encephalopathies. Brain Dev 30:106–111PubMedCrossRefGoogle Scholar
  9. Echenne B, Roubertie L et al (2008) Monoamine metabolism study in severe, early onset epilepsy in childhood. Epileptic Disord 10(2):130–135PubMedGoogle Scholar
  10. Evered DF (1971) L-dopa as a Vitamin B6 antagonist. Lancet 1:914PubMedCrossRefGoogle Scholar
  11. Gachon F, Fonjallaz P, Damiola F, Gos P, Kodama T, Zakany J, Duboule D, Petit B, Tafti M, Schibler U (2004) The loss of circadian PAR bZip transcription factors results in epilepsy. Genes Dev 18:1397–1412PubMedCrossRefGoogle Scholar
  12. Garcia-Cazorla A, Quadros EV, Nascimento A et al (2008) Mitochondrial diseases associated with cerebral folate deficiency. Neurology 70(16):1360–1362PubMedCrossRefGoogle Scholar
  13. Heales S and Hyland K (1989) Determination of Quinonoid Dihydrobiopterin by High Performance Liquid Chromatography and Electrochemical Detection. J ChromatoGoogle Scholar
  14. Heales SJR, Blair JA, Meinschad C, Zielger I (1985) Inhibition of Monocyte Luminol-Dependent Chemiluminescence by Tetrahydrobiopterin, and the Free Radical Oxidation of Tetrahydrobiopterin, Dihydrobiopterin and Dihydroneopterin. Cell Biochem Func 6:191–195CrossRefGoogle Scholar
  15. Hellmann H, Mooney S (2010) Vitamin B6: a molecule for human health? Molecules 15:442–459PubMedCrossRefGoogle Scholar
  16. Hyland K, Shoffner J, Heales SJ (2010) Cerebral folate deficiency. J Inherit Metab Dis 33(5):563–70PubMedCrossRefGoogle Scholar
  17. Hyland K, Surtees R, Heales S, Bowron A, Howells D, Smith I (1993) Cerebrospinal fluid concentrations of pterins and metabolites of serotonin and dopamine in a pediatric reference population. Pediatr Res 34:10–14PubMedCrossRefGoogle Scholar
  18. Kozlov EI, L’vova M Sh’ and Chugunov VV (1979). ‘Vitamins’ from Khimiko-Farmatsevticheskii ZhurnalGoogle Scholar
  19. Meisel SB, Welford PK (1992) Seizures associated with high-dose intravenous morphine containing sodium bisulfite preservative. Ann Pharmacother 26(12):1515–7PubMedGoogle Scholar
  20. Midttun O, Hustard S, Solheim et al (2005). Multianalyte Quantification of Vitamin B6 and B2 Species in the Nanomolar Range in Human Plasma by Liquid Chromatography-Tandem Mass Spectrometry.Clin Chem 51:7; 1206 0 1216Google Scholar
  21. Miller JW, Selhub J, Nadeau MR et al (2003) Effect of L-dopa on plasma homocysteine in PD patients. Neurology 60:1125–1129PubMedGoogle Scholar
  22. Mills PB, Surtees RAH, Champion MP et al (2005) Neonatal epileptic encephalopathy caused by mutations in the PNPO gene encoding pyridox(am)ine 5_-phosphate oxidase. Hum Mol Genet 14:1077–1086PubMedCrossRefGoogle Scholar
  23. Mills PB, Footitt EJ, Mills KA et al (2010) Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency). Brain 133(Pt 7):2148–2159PubMedCrossRefGoogle Scholar
  24. Ormazabal A, Garcia-Cazorla A, Fernandez Y, Fernandez-Alvarez E, Campistol J, Artuch R (2005) HPLC with electrochemical and fluorescence detection procedures for the diagnosis of inborn errors of biogenic amines and pterins. J neurosci methods 142:153–158PubMedCrossRefGoogle Scholar
  25. Ormazabal A, Oppenheim M, Serrano M et al (2008) Pyridoxal 5′-phosphate values in cerebrospinal fluid: Reference values and diagnosis of PNPO deficiency in paediatric patients. Mol Genet Metab 94:173–177PubMedCrossRefGoogle Scholar
  26. Rezk BM, Haenen GRMM, van der Nigh WJF, Bast A (2003) Teterahydrofolate and 5-methyltetrahydrofolate are folates with high antioxidant activity. Identification of the antioxidant pharmacophore. FEBS Lett 555:601–05PubMedCrossRefGoogle Scholar
  27. Sandler M (1971) How does L-dopa work in parkinsonism? Lancet 1(7703):784PubMedCrossRefGoogle Scholar
  28. Shin YS, Rasshofer R, Endres W (1984) Pyridoxal 5′-phosphate concentration as a marker for vitamin B6-dependent seizures in the newborn. Lancet 13:870–871CrossRefGoogle Scholar
  29. Smolinske SC (1992) Review of parenteral sulfite reactions. J Toxicol Clin Toxicol 30(4):597–606, ReviewPubMedCrossRefGoogle Scholar
  30. Spector R, Johanson CE (2007) Vitamin transport and homeostasis in mammalian brain: focus on Vitamins B and E. J Neurochem 103:245CrossRefGoogle Scholar
  31. Steinfeld R, Grapp M, Kraetzner R, Dreha-Kulaczewski S, Helms G, Dechent P, Wevers R, Grosso S, Gärtner J (2009) Folate receptor alpha defect causes cerebral folate transport deficiency: a treatable neurodegenerative disorder associated with disturbed myelin metabolism. Am J Hum Genet 85(3):354–63PubMedCrossRefGoogle Scholar
  32. Surtees R, Mills PB, Clayton PT (2006) Inborn errors affecting Vitamin B6 metabolism. Future Medicine 1(5):615–620Google Scholar
  33. Vasquez-Vivar J (2009) Tetrahydrobiopterin, superoxide and vascular stress. Free Radic Biol Med 47:1108–1119PubMedCrossRefGoogle Scholar
  34. Verrotti A, Pascarella R, Trotta D et al (2000) Hyperhomocysteinemia ion children treated with sodium valproate and carbamazepine. Epilepsy Res 41:253–257PubMedCrossRefGoogle Scholar
  35. Vonderschitt DJ, Smith Vitols K, Huennekens FM, Scrimgeour KG (1967) Addition of bisulfite to folate and dihydrofolate. Arch Biochem Biophys 122:488–493CrossRefGoogle Scholar

Copyright information

© SSIEM and Springer 2011

Authors and Affiliations

  • Emma J. Footitt
    • 1
  • Simon J. Heales
    • 1
    • 2
    • 3
  • Philippa B. Mills
    • 1
  • George F. G. Allen
    • 4
  • Marcus Oppenheim
    • 2
  • Peter T. Clayton
    • 1
  1. 1.Clinical and Molecular Genetics UnitUCL Institute of Child HealthLondonUK
  2. 2.Neurometabolic UnitNational HospitalLondonUK
  3. 3.Enzyme and Metabolic UnitGreat Ormond Street Hospital for ChildrenLondonUK
  4. 4.UCL Institute of NeurologyLondonUK

Personalised recommendations