Journal of Inherited Metabolic Disease

, Volume 35, Issue 1, pp 65–70 | Cite as

Amino acid metabolism in patients with propionic acidaemia

  • Sabine Scholl-Bürgi
  • Jörn Oliver Sass
  • Johannes Zschocke
  • Daniela Karall
Branched-Chain Amino Acids


Propionic acidaemia (PA) is an inborn error of intermediary metabolism caused by deficiency of propionyl-CoA carboxylase. The metabolic block leads to a profound failure of central metabolic pathways, including the urea and the citric acid cycles. This review will focus on changes in amino acid metabolism in this inborn disorder of metabolism. The first noted disturbance of amino acid metabolism was hyperglycinaemia, which is detectable in nearly all PA patients. Additionally, hyperlysinaemia is a common observation. In contrast, concentrations of branched chain amino acids, especially of isoleucine, are frequently reported as decreased. These non-proportional changes of branched-chain amino acids (BCAAs) compared with aromatic amino acids are also reflected by the Fischer’s ratio (concentration ratio of BCAAs to aromatic amino acids), which is decreased in PA patients. As restricted dietary intake of valine and isoleucine as precursors of propionyl-CoA is part of the standard treatment in PA, decreased plasma concentrations of BCAAs may be a side effect of treatment. The concentration changes of the nitrogen scavenger glutamine have to be interpreted in the light of ammonia levels. In contrast to other hyperammonaemic syndromes, in PA plasma glutamine concentrations do not increase in hyperammonaemia, whereas CSF glutamine concentrations are elevated. Despite lactic acidaemia in PA patients, hyperalaninaemia is only rarely reported. The mechanisms underlying the observed changes in amino acid metabolism have not yet been elucidated, but most of the changes can be at least partly interpreted as consequence of disturbance of anaplerosis.


Amino Acid Metabolism Citric Acid Cycle Glutamine Concentration Propionic Acidaemia Glycine Cleavage System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Adenosine triphosphate


Branched chain amino acids


Cerebrospinal fluid


Central nervous system


Coenzyme A


Cerebrospinal fluid


Carbamylphosphate synthetase


Propionic acidaemia


Propionyl-CoA carboxylase


  1. Al-Hassnan ZN, Boyadjiev SA, Praphanphoj V, Hamosh A, Braverman NE, Thomas GH, Geraghty MT (2003) The relationship of plasma glutamine to ammonium and of glycine to acid-base balance in propionic acidaemia. J Inherit Metab Dis 26:89–91PubMedCrossRefGoogle Scholar
  2. Applegarth DA, Toone JR (2001) Nonketotic hyperglycinemia (glycine encephalopathy): laboratory diagnosis. Mol Genet Metab 74:139–146PubMedCrossRefGoogle Scholar
  3. Bachmann C, Braissant O, Villard A-M, Boulat O, Henry H (2004) Ammonia toxicity to the brain and creatine. Mol Genet Metab 81:S52–S57PubMedCrossRefGoogle Scholar
  4. Bergman AJIW, Van der Knaap MS, Smeitink JAM, Duran M, Dorland L, Valk J, Poll-The BT (1996) Magnetic resonance imaging and spectroscopy of the brain in propionic acidemia: clinical and biochemical considerations. Pediatr Res 40:404–409PubMedCrossRefGoogle Scholar
  5. Briddon A (1996) Decision support techniques for the interpretation of quantitative amino acid data. Ann Clin Biochem 33:227–233PubMedGoogle Scholar
  6. Brunengraber H, Roe CR (2006) Anaplerotic molecules: current and future. J Inherit Metab Dis 29:327–331PubMedCrossRefGoogle Scholar
  7. Cheema-Dhadli S, Leznoff CC, Halperin ML (1975) Effect of 2-methylcitrate on citrate metabolism: implications for the management of patients with propionic acidemia and methylmalonic aciduria. Pediatr Res 9:905–908PubMedGoogle Scholar
  8. Childs B, Nyhan WL, Borden M, Bard L, Cooke RE (1961) Idiopathic hyperglycinemia and hyperglycinuria: a new disorder of amino acid metabolism. J Pediatr 27:522–538Google Scholar
  9. Coude FX, Sweetman L, Nyhan WL (1979) Inhibition by propionyl-coenzyme A of N-acetylglutamate synthetase in rat liver mitochondria. J Clin Invest 64:1544–1551PubMedCrossRefGoogle Scholar
  10. De Raeve L, De Meirleir L, Ramet J, Vandenplas Y, Gerlo E (1994) Acrodermatitis enteropathica-like cutaneous lesions in organic aciduria. J Pediatr 124:416–420PubMedCrossRefGoogle Scholar
  11. Fenton WA, Gravel RA, Rosenberg DS (2001) Disorders of propionate and methylmalonate metabolism. In: Scriver CR, Beaudet AL, Sly W, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 2165–2190Google Scholar
  12. Filipowicz HR, Ernst SL, Ashurst CL, Pasquali M, Longo N (2006) Metabolic changes associated with hyperammonemia in patients with propionic acidemia. Mol Genet Metab 88:123–130PubMedCrossRefGoogle Scholar
  13. Gebhardt B, Dittrich S, Parbel S, Vlaho S, Matsika O, Böhles H (2005) N-Carbamylglutamate protects patients with decompensated propionic aciduria from hyperammonaemia. J Inherit Metab Dis 28:241–244PubMedCrossRefGoogle Scholar
  14. Gompertz D, Storrs CN, Bau DC, Peters TJ, Hughes EA (1970) Localisation of enzymatic defect in propionicacidaemia. Lancet 30:1140–1143CrossRefGoogle Scholar
  15. Gregersen N (1979) Studies on the effect of saturated and unsaturated short-chain monocarboxylic acids on the energy metabolism of the rat liver mitochondria. Pediatr Res 13:1227–1230PubMedGoogle Scholar
  16. Gregersen N (1981) The specific inhibition of the pyruvate dehydrogenase complex from pig kidney by propionyl-CoA and isovaleryl-CoA. Biochem Med 26:20–27PubMedCrossRefGoogle Scholar
  17. Haase FC, Beegen H, Allen SH (1984) Propionyl-coenzyme A carboxylase of Mycobacterium smegmatis. An electron microscopic study. Eur J Biochem 140:147–151PubMedCrossRefGoogle Scholar
  18. Hayasaka K, Tada K (1983) Effects of the metabolites of the branched-chain amino acids and cysteamine on the glycine cleavage system. Biochem Int 6:225–230PubMedGoogle Scholar
  19. Ierardi-Curto L, Kaplan P, Saitta S, Mazur A, Berry GT (2000) The glutamine paradox in a neonate with propionic acidaemia and severe hyperammonaemia. J Inherit Metab Dis 23:85–86PubMedCrossRefGoogle Scholar
  20. James JH (2002) Branched chain amino acids in hepatic encephalopathy. Am J Surg 183:424–429PubMedCrossRefGoogle Scholar
  21. Kalousek F, Darigo MD, Rosenburg LE (1980) Isolation and characterization of propionyl-CoA carboxylase from normal human liver. J Biol Chem 255:60–65PubMedGoogle Scholar
  22. Kølvraa S (1979) Inhibition of the glycine cleavage system by branched-chain amino acid metabolites. Pediatr Res 13:889–993PubMedGoogle Scholar
  23. Lehnert W, Sperl W, Suormala T, Baumgartner ER (1994) Propionic acidemia: clinical, biochemical and therapeutic aspects. Experience in 30 patients. Eur J Pediatr 153(suppl1):68–80CrossRefGoogle Scholar
  24. Leonard JV (1997) Stable isotope studies in propionic and methylmalonic acidemia. Eur J Pediatr 156(suppl1):67–69CrossRefGoogle Scholar
  25. Markovitz PJ, Chuang DT, Cox RP (1984) Familial hyperlysinemias. Purification and characterization of the bifunctional aminoadipic semialdehyde synthase with lysine-ketoglutarate reductase and saccharopine dehydrogenase activities. J Biol Chem 259:11643–11646PubMedGoogle Scholar
  26. Morgan MY, Milsom JP, Sherlock S (1978) Plasma ratio of valine, leucine and isoleucine to phenylalanine and tyrosine in liver disease. Gut 19:1068–1073PubMedCrossRefGoogle Scholar
  27. Parvy P, Bardet J, Rabier D, Kamoun P (1988) Pseudo-cystinuria-lysinuria in neonatal propionic acidemia. Clin Chem 34:2158PubMedGoogle Scholar
  28. Sacksteder KA, Biery BJ, Morrell JC, Goodman BK, Geisbrecht BV, Cox RP, Gould SJ, Geraghty MT (2000) Identification of the alpha-aminoadipic semialdehyde synthase gene, which is defective in familial hyperlysinemia. Am J Hum Genet 66:1736–1743PubMedCrossRefGoogle Scholar
  29. Sass JO, Hofmann M, Skladal D, Mayatepek E, Schwahn B, Sperl W (2004) Propionic acidemia revisited: a workshop report. Clin Pediatr 43:837–843CrossRefGoogle Scholar
  30. Scholl-Bürgi S, Grissenauer G, Fendl A, Baumgartner S, Konstantopoulou V, Skladal D (2004) Dietary therapy in propionic acidemia: recommended versus real protein supply. J Inherit Metab Dis 27(suppl 1):43Google Scholar
  31. Scholl-Bürgi S, Korman SH, Applegarth DA, Karall D, Lillquist Y, Heinz-Erian P, Davidson AG, Haberlandt E, Sass JO (2008a) The relation of cerebrospinal fluid and plasma glycine levels in propionic acidaemia, a ‘ketotic hyperglycinaemia’. J Inherit Metab Dis 31:395–398PubMedCrossRefGoogle Scholar
  32. Scholl-Bürgi S, Haberlandt E, Heinz-Erian P, Deisenhammer F, Albrecht U, Baumgartner Sigl S, Rauchenzauner M, Ulmer H, Karall D (2008b) Determination of amino acid CSF/plasma-ratios by ion-exchange chromatography with ninhydrin-detection in children: influence of age and usefulness for clinical purposes. Pediatrics 121:e920–926PubMedCrossRefGoogle Scholar
  33. Scholl-Bürgi S, Haberlandt E, Gotwald T, Albrecht U, Baumgartner Sigl S, Rauchenzauner M, Rostásy K, Karall D (2009) Stroke-like episodes in propionic acidemia caused by central focal metabolic decompensation. Neuropediatrics 40:76–81PubMedCrossRefGoogle Scholar
  34. Scholl-Bürgi S, Sass JO, Heinz-Erian P, Amann E, Haberlandt E, Albrecht U, Ertl C, Baumgartner Sigl S, Lagler F, Rostásy K, Karall D (2010) Changes in plasma amino acid concentrations with increasing age in patients with propionic acidemia. Amino Acids 38:1473–1481PubMedCrossRefGoogle Scholar
  35. Schwab MA, Sauer SW, Okun JG, Nijtmans LG, Rodenburg RJ, van den Heuvel LP, Dröse S, Brandt U, Hoffmann GF, Ter Laak H, Kölker S, Smeitink JA (2006) Secondary mitochondrial dysfunction in propionic aciduria: a pathogenic role for endogenous mitochondrial toxins. Biochem J 398:107–112PubMedCrossRefGoogle Scholar
  36. Shih VE (2003) Amino acid analysis. In: Blau N, Duran M, Blaskovics ME, Gibson KM (eds) Physician`s guide to the laboratory diagnosis of metabolic diseases, 2nd edn. Springer, Berlin, pp 11–26Google Scholar
  37. Smeitink J, van den Heuvel B, Trijbels F, Ruitenbeek W, Sengers R (2003) Mitochondrial energy metabolism. In: Blau N, Duran M, Blaskovics ME, Gibson KM (eds) Physician`s guide to the laboratory diagnosis of metabolic diseases, 2nd edn. Springer, Berlin, pp 519–536Google Scholar
  38. Stewart PM, Walser M (1980) Failure of the normal ureagenic response to amino acids in organic acid-loaded rats. Proposed mechanism for the hyperammonemia of propionic and methylmalonic acidemia. J Clin Invest 66:484–492PubMedCrossRefGoogle Scholar
  39. Tabanlioğlu D, Ersoy-Evans S, Karaduman A (2009) Acrodermatitis enteropathica-like eruption in metabolic disorders: acrodermatitis dysmetabolica is proposed as a better term. Pediatr Dermatol 26:150–154PubMedCrossRefGoogle Scholar
  40. Thomas L (2008) Stoffwechsel-Parameter. In: Thomas L (ed) Labor und Diagnose 7th edn. TH-Books, Frankfurt/Main, pp 249–259Google Scholar
  41. Touati G, Valayannopoulos V, Mention K, de Lonlay P, Jouvet P, Depondt E, Assoun M, Souberbielle JC, Rabier D, Ogier de Baulny H, Saudubray JM (2006) Methylmalonic and propionic acidurias: management without or with a few supplements of specific amino acid mixture. J Inherit Metab Dis 29:288–298PubMedCrossRefGoogle Scholar
  42. Tuchman M, Yudkoff M (1999) Blood levels of ammonia and nitrogen scavenging amino acids in patients with inherited hyperammonemia. Mol Genet Metab 66:10–15PubMedCrossRefGoogle Scholar
  43. Ugarte M, Pérez-Cerdá C, Rodríguez-Pombo P, Desviat LR, Pérez B, Richard E, Muro S, Campeau E, Ohura T, Gravel RA (1999) Overview of mutations in the PCCA and PCCB genes causing propionic acidemia. Hum Mut 14:275–282PubMedCrossRefGoogle Scholar
  44. Wolf B, Hsia YE, Sweetman L, Gravel R, Harris DJ, Nyhan WL (1981) Propionic acidemia: a clinical update. J Pediatr 99:835–846PubMedCrossRefGoogle Scholar

Copyright information

© SSIEM and Springer 2010

Authors and Affiliations

  • Sabine Scholl-Bürgi
    • 1
  • Jörn Oliver Sass
    • 2
  • Johannes Zschocke
    • 3
  • Daniela Karall
    • 1
    • 3
  1. 1.Department of Paediatrics IV, Division of Neonatology, Neuropaediatrics and Inherited Metabolic DisordersInnsbruck Medical UniversityInnsbruckAustria
  2. 2.Labor für Klinische Biochemie und Stoffwechsel, Zentrum für Kinder- und JugendmedizinUniversitätsklinikum FreiburgFreiburgGermany
  3. 3.Division of Human GeneticsInnsbruck Medical UniversityInnsbruckAustria

Personalised recommendations