Journal of Inherited Metabolic Disease

, Volume 33, Issue 4, pp 397–403

Present and future of antisense therapy for splicing modulation in inherited metabolic disease

  • Belen Pérez
  • Laura Rodríguez-Pascau
  • Luisa Vilageliu
  • Daniel Grinberg
  • Magdalena Ugarte
  • Lourdes R. Desviat
Review

Abstract

The number of mutations identified deep in introns which activate or create novel splice sites resulting in pathogenic pseudoexon inclusion in mRNA continues to grow for inherited metabolic disease (IMD) and other human genetic diseases. A common characteristic is that the native splice sites remain intact thus retaining the potential for normal splicing. Antisense oligonucleotides (AO) have been shown to modulate the splicing pattern by steric hindrance of the recognition and binding of the splicing apparatus to the selected sequences. In the case of pseudoexons, AO force the use of the natural splice sites, recovering normally spliced transcripts encoding functional protein. This review summarizes the present knowledge of antisense splicing modulation as a molecular therapy approach for pseudoexon-activating mutations, with a focus in IMD. Although the feasibility of treatment for patients with IMD has yet to be proven, it appears to be clinically promising, as positive results have been reported in cellular and animal models of disease, and antisense therapy for splicing modulation is currently in the clinical trials phase for Duchenne muscular dystrophy patients. Here, we review the most recent advances in AO stability, targeting and delivery, and other issues to be considered for an effective treatment in the clinical setting. Although the number of patients who can be potentially treated is low for each IMD, it represents an excellent therapeutical option as a type of personalized molecular medicine which is especially relevant for diseases for which there is, to date, no efficient treatment.

References

  1. Aartsma-Rus A, Janson AA, Kaman WE, Bremmer-Bout M, den Dunnen JT, Baas F, van Ommen GJ, van Deutekom JC (2003) Therapeutic antisense-induced exon skipping in cultured muscle cells from six different DMD patients. Hum Mol Genet 12:907–914CrossRefPubMedGoogle Scholar
  2. Aartsma-Rus A, Janson AA, Kaman WE, Bremmer-Bout M, van Ommen GJ, den Dunnen JT, van Deutekom JC (2004) Antisense-induced multiexon skipping for Duchenne muscular dystrophy makes more sense. Am J Hum Genet 74:83–92CrossRefPubMedGoogle Scholar
  3. Aartsma-Rus A, Fokkema I, Verschuuren J, Ginjaar I, van Deutekom J, van Ommen GJ, den Dunnen JT (2009) Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat 30:293–299CrossRefPubMedGoogle Scholar
  4. Alter J, Lou F, Rabinowitz A, Yin H, Rosenfeld J, Wilton SD, Partridge TA, Lu QL (2006) Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology. Nat Med 12:175–177CrossRefPubMedGoogle Scholar
  5. Aouadi M, Tesz GJ, Nicoloro SM, Wang M, Chouinard M, Soto E, Ostroff GR, Czech MP (2009) Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature 458:1180–1184CrossRefPubMedGoogle Scholar
  6. Dominski Z, Kole R (1993) Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc Natl Acad Sci USA 90:8673–8677CrossRefPubMedGoogle Scholar
  7. Du L, Pollard JM, Gatti RA (2007) Correction of prototypic ATM splicing mutations and aberrant ATM function with antisense morpholino oligonucleotides. Proc Natl Acad Sci USA 104:6007–6012CrossRefPubMedGoogle Scholar
  8. Friedman KJ, Kole J, Cohn JA, Knowles MR, Silverman LM, Kole R (1999) Correction of aberrant splicing of the cystic fibrosis transmembrane conductance regulator (CFTR) gene by antisense oligonucleotides. J Biol Chem 274:36193–36199CrossRefPubMedGoogle Scholar
  9. Goyenvalle A, Babbs A, Powell D, Kole R, Fletcher S, Wilton SD, Davies KE (2010) Prevention of dystrophic pathology in severely affected dystrophin/utrophin-deficient mice by morpholino-oligomer-mediated exon-skipping. Mol Ther 18:198–205CrossRefPubMedGoogle Scholar
  10. Gurvich OL, Tuohy TM, Howard MT, Finkel RS, Medne L, Anderson CB, Weiss RB, Wilton SD, Flanigan KM (2008) DMD pseudoexon mutations: splicing efficiency, phenotype, and potential therapy. Ann Neurol 63:81–89CrossRefPubMedGoogle Scholar
  11. Hoffman E (2007) Skipping toward personalized molecular medicine. N Engl J Med 357:2719–2722CrossRefPubMedGoogle Scholar
  12. Homolova K, Zavadakova P, Doktor TK, Schroeder LD, Kozich V, Andresen BS (2010) The deep intronic c.903+469T>C mutation in the MTRR gene creates an SF2/ASF binding exonic splicing enhancer, which leads to pseudoexon activation and causes the cblE type of homocystinuria. Hum Mutat 31(4):437–444Google Scholar
  13. Ikeda H, Matsubara Y, Mikami H, Kure S, Owada M, Gough T, Smooker PM, Dobbs M, Dahl HH, Cotton RG, Narisawa K (1997) Molecular analysis of dihydropteridine reductase deficiency: identification of two novel mutations in Japanese patients. Hum Genet 100:637–642CrossRefPubMedGoogle Scholar
  14. Juliano R, Bauman J, Kang H, Ming X (2009) Biological barriers to therapy with antisense and siRNA oligonucleotides. Mol Pharm 6:686–695CrossRefPubMedGoogle Scholar
  15. Kinali M, Arechavala-Gomeza V, Feng L, Cirak S, Hunt D, Adkin C, Guglieri M, Ashton E, Abbs S, Nihoyannopoulos P, Garralda ME, Rutherford M, McCulley C, Popplewell L, Graham IR, Dickson G, Wood MJ, Wells DJ, Wilton SD, Kole R, Straub V, Bushby K, Sewry C, Morgan JE, Muntoni F (2009) Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol 8:918–928CrossRefPubMedGoogle Scholar
  16. Knebelmann B, Forestier L, Drouot L, Quinones S, Chuet C, Benessy F, Saus J, Antignac C (1995) Splice-mediated insertion of an Alu sequence in the COL4A3 mRNA causing autosomal recessive Alport syndrome. Hum Mol Genet 4:675–679CrossRefPubMedGoogle Scholar
  17. Kumar P, Wu H, McBride JL, Jung KE, Kim MH, Davidson BL, Lee SK, Shankar P, Manjunath N (2007) Transvascular delivery of small interfering RNA to the central nervous system. Nature 448:39–43CrossRefPubMedGoogle Scholar
  18. Kurreck J (2003) Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 270:1628–1644CrossRefPubMedGoogle Scholar
  19. Li YF, Morcos PA (2008) Design and synthesis of dendritic molecular transporter that achieves efficient in vivo delivery of morpholino antisense oligo. Bioconjug Chem 19:1464–1470CrossRefPubMedGoogle Scholar
  20. Madsen EC, Morcos PA, Mendelsohn BA, Gitlin JD (2008) In vivo correction of a Menkes disease model using antisense oligonucleotides. Proc Natl Acad Sci USA 105:3909–3914CrossRefPubMedGoogle Scholar
  21. Maquat LE (2004) Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat Rev Mol Cell Biol 5:89–99CrossRefPubMedGoogle Scholar
  22. Meili D, Kralovicova J, Zagalak J, Bonafe L, Fiori L, Blau N, Thony B, Vorechovsky I (2009) Disease-causing mutations improving the branch site and polypyrimidine tract: pseudoexon activation of LINE-2 and antisense Alu lacking the poly(T)-tail. Hum Mutat 30:823–831CrossRefPubMedGoogle Scholar
  23. Mercatante DR, Mohler JL, Kole R (2002) Cellular response to an antisense-mediated shift of Bcl-x pre-mRNA splicing and antineoplastic agents. J Biol Chem 277:49374–49382CrossRefPubMedGoogle Scholar
  24. Mitchell GA, Labuda D, Fontaine G, Saudubray JM, Bonnefont JP, Lyonnet S, Brody LC, Steel G, Obie C, Valle D (1991) Splice-mediated insertion of an Alu sequence inactivates ornithine delta-aminotransferase: a role for Alu elements in human mutation. Proc Natl Acad Sci USA 88:815–819CrossRefPubMedGoogle Scholar
  25. Miyazaki T, Ohura T, Kobayashi M, Shigematsu Y, Yamaguchi S, Suzuki Y, Hata I, Aoki Y, Yang X, Minjares C, Haruta I, Uto H, Ito Y, Muller U (2001) Fatal propionic acidemia in mice lacking propionyl-CoA carboxylase and its rescue by postnatal, liver-specific supplementation via a transgene. J Biol Chem 276:35995–35999CrossRefPubMedGoogle Scholar
  26. Moreno PM, Wenska M, Lundin KE, Wrange O, Stromberg R, Smith CI (2009) A synthetic snRNA m3G-CAP enhances nuclear delivery of exogenous proteins and nucleic acids. Nucleic Acids Res 37:1925–1935CrossRefPubMedGoogle Scholar
  27. Moulton JD, Jiang S (2009) Gene knockdowns in adult animals: PPMOs and vivo-morpholinos. Molecules 14:1304–1323CrossRefPubMedGoogle Scholar
  28. Ogino W, Takeshima Y, Nishiyama A, Okizuka Y, Yagi M, Tsuneishi S, Saiki K, Kugo M, Matsuo M (2007) Mutation analysis of the ornithine transcarbamylase (OTC) gene in five Japanese OTC deficiency patients revealed two known and three novel mutations including a deep intronic mutation. Kobe J Med Sci 53:229–240PubMedGoogle Scholar
  29. Perez B, Rincon A, Jorge-Finnigan A, Richard E, Merinero B, Ugarte M, Desviat LR (2009) Pseudoexon exclusion by antisense therapy in methylmalonic aciduria (MMAuria). Hum Mutat 30:1676–1682CrossRefPubMedGoogle Scholar
  30. Pros E, Fernandez-Rodriguez J, Canet B, Benito L, Sanchez A, Benavides A, Ramos FJ, Lopez-Ariztegui MA, Capella G, Blanco I, Serra E, Lazaro C (2009) Antisense therapeutics for neurofibromatosis type 1 caused by deep intronic mutations. Hum Mutat 30:454–462CrossRefPubMedGoogle Scholar
  31. Purevsuren J, Fukao T, Hasegawa Y, Fukuda S, Kobayashi H, Yamaguchi S (2008) Study of deep intronic sequence exonization in a Japanese neonate with a mitochondrial trifunctional protein deficiency. Mol Genet Metab 95:46–51CrossRefPubMedGoogle Scholar
  32. Rincon A, Aguado C, Desviat LR, Sanchez-Alcudia R, Ugarte M, Perez B (2007) Propionic and methylmalonic acidemia: antisense therapeutics for intronic variations causing aberrantly spliced messenger RNA. Am J Hum Genet 81:1262–1270CrossRefGoogle Scholar
  33. Rodriguez-Pascau L, Coll MJ, Vilageliu L, Grinberg D (2009) Antisense oligonucleotide treatment for a pseudoexon-generating mutation in the NPC1 gene causing Niemann-Pick type C diseaseb. Hum Mutat 30:E993–E1001CrossRefPubMedGoogle Scholar
  34. Sazani P, Gemignani F, Kang SH, Maier MA, Manoharan M, Persmark M, Bortner D, Kole R (2002) Systemically delivered antisense oligomers upregulate gene expression in mouse tissues. Nat Biotechnol 20:1228–1233CrossRefPubMedGoogle Scholar
  35. Schollen E, Keldermans L, Foulquier F, Briones P, Chabas A, Sanchez-Valverde F, Adamowicz M, Pronicka E, Wevers R, Matthijs G (2007) Characterization of two unusual truncating PMM2 mutations in two CDG-Ia patients. Mol Genet Metab 90:408–413CrossRefPubMedGoogle Scholar
  36. Sorek R, Lev-Maor G, Reznik M, Dagan T, Belinky F, Graur D, Ast G (2004) Minimal conditions for exonization of intronic sequences: 5’ splice site formation in alu exons. Mol Cell 14:221–231CrossRefPubMedGoogle Scholar
  37. Thierry AR, Abes S, Resina S, Travo A, Richard JP, Prevot P, Lebleu B (2006) Comparison of basic peptides-and lipid-based strategies for the delivery of splice correcting oligonucleotides. Biochim Biophys Acta 1758:364–374CrossRefPubMedGoogle Scholar
  38. Tsuruta M, Mitsubuchi H, Mardy S, Miura Y, Hayashida Y, Kinugasa A, Ishitsu T, Matsuda I, Indo Y (1998) Molecular basis of intermittent maple syrup urine disease: novel mutations in the E2 gene of the branched-chain alpha-keto acid dehydrogenase complex. J Hum Genet 43:91–100CrossRefPubMedGoogle Scholar
  39. van Deutekom JC, Janson AA, Ginjaar IB, Frankhuizen WS, Aartsma-Rus A, Bremmer-Bout M, den Dunnen JT, Koop K, van der Kooi AJ, Goemans NM, de Kimpe SJ, Ekhart PF, Venneker EH, Platenburg GJ, Verschuuren JJ, van Ommen GJ (2007) Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 357:2677–2686CrossRefPubMedGoogle Scholar
  40. Vega AI, Perez-Cerda C, Desviat LR, Matthijs G, Ugarte M, Perez B (2009) Functional analysis of three splicing mutations identified in the PMM2 gene: toward a new therapy for congenital disorder of glycosylation type Ia. Hum Mutat 30:795–803CrossRefPubMedGoogle Scholar
  41. Vervoort R, Gitzelmann R, Lissens W, Liebaers I (1998) A mutation (IVS8+0.6kbdelTC) creating a new donor splice site activates a cryptic exon in an Alu-element in intron 8 of the human beta-glucuronidase gene. Hum Genet 103:686–693PubMedGoogle Scholar
  42. Vetrini F, Tammaro R, Bondanza S, Surace EM, Auricchio A, De Luca M, Ballabio A, Marigo V (2006) Aberrant splicing in the ocular albinism type 1 gene (OA1/GPR143) is corrected in vitro by morpholino antisense oligonucleotides. Hum Mutat 27:420–426CrossRefPubMedGoogle Scholar
  43. White PJ, Anastasopoulos F, Pouton CW, Boyd BJ (2009) Overcoming biological barriers to in vivo efficacy of antisense oligonucleotides. Expert Rev Mol Med 11:e10CrossRefPubMedGoogle Scholar
  44. Wu B, Li Y, Morcos PA, Doran TJ, Lu P, Lu QL (2009) Octa-guanidine morpholino restores dystrophin expression in cardiac and skeletal muscles and ameliorates pathology in dystrophic mdx mice. Mol Ther 17:864–871CrossRefPubMedGoogle Scholar
  45. Yokota T, Lu QL, Partridge T, Kobayashi M, Nakamura A, Takeda S, Hoffman E (2009) Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs. Ann Neurol 65:667–676CrossRefPubMedGoogle Scholar

Copyright information

© SSIEM and Springer 2010

Authors and Affiliations

  • Belen Pérez
    • 1
    • 2
  • Laura Rodríguez-Pascau
    • 3
    • 4
  • Luisa Vilageliu
    • 3
    • 4
  • Daniel Grinberg
    • 3
    • 4
  • Magdalena Ugarte
    • 1
    • 2
  • Lourdes R. Desviat
    • 1
    • 2
  1. 1.Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, UAM-CSICUniversidad Autónoma de MadridMadridSpain
  2. 2.Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)MadridSpain
  3. 3.Departament de Genetica, Institut de Biomedicina de la Universitat de Barcelona (IBUB)Universitat de BarcelonaBarcelonaSpain
  4. 4.Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)BarcelonaSpain

Personalised recommendations