Journal of Inherited Metabolic Disease

, Volume 33, Issue 3, pp 281–289

Improved management of lysosomal glucosylceramide levels in a mouse model of type 1 Gaucher disease using enzyme and substrate reduction therapy

  • John Marshall
  • Kerry Anne McEachern
  • Wei-Lien Chuang
  • Elizabeth Hutto
  • Craig S. Siegel
  • James A. Shayman
  • Greg A. Grabowski
  • Ronald K. Scheule
  • Diane P. Copeland
  • Seng H. Cheng
Original Article

Abstract

Gaucher disease is caused by a deficiency of the lysosomal enzyme glucocerebrosidase (acid β-glucosidase), with consequent cellular accumulation of glucosylceramide (GL-1). The disease is managed by intravenous administrations of recombinant glucocerebrosidase (imiglucerase), although symptomatic patients with mild to moderate type 1 Gaucher disease for whom enzyme replacement therapy (ERT) is not an option may also be treated by substrate reduction therapy (SRT) with miglustat. To determine whether the sequential use of both ERT and SRT may provide additional benefits, we compared the relative pharmacodynamic efficacies of separate and sequential therapies in a murine model of Gaucher disease (D409V/null). As expected, ERT with recombinant glucocerebrosidase was effective in reducing the burden of GL-1 storage in the liver, spleen, and lung of 3-month-old Gaucher mice. SRT using a novel inhibitor of glucosylceramide synthase (Genz-112638) was also effective, albeit to a lesser degree than ERT. Animals administered recombinant glucocerebrosidase and then Genz-112638 showed the lowest levels of GL-1 in all the visceral organs and a reduced number of Gaucher cells in the liver. This was likely because the additional deployment of SRT following enzyme therapy slowed the rate of reaccumulation of GL-1 in the affected organs. Hence, in patients whose disease has been stabilized by intravenously administered recombinant glucocerebrosidase, orally administered SRT with Genz-112638 could potentially be used as a convenient maintenance therapy. In patients naïve to treatment, ERT followed by SRT could potentially accelerate clearance of the offending substrate.

Abbreviations

CNS

Central nervous system

ERT

Enzyme replacement therapy

ESI/MS

Electrospray ionization mass spectrometry

GD

Gaucher disease

GL-1

Glucosylceramide

H&E

Hematoxylin and eosin

HPLC

High-performance liquid chromatography

NB-DNJ

N-butyl deoxynojirimycin

SRT

Substrate reduction therapy

References

  1. Aerts JM, Ottenhoff R, Powlson AS et al (2007) Pharmacological inhibition of glucosylceramide synthase enhances insulin sensitivity. Diabetes 56:1341–1349CrossRefPubMedGoogle Scholar
  2. Beutler E, Grabowski GA (2001) Gaucher disease. In: Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease (Scriver CR). McGraw-Hill, New York, pp 3635–3668Google Scholar
  3. Brady RO, Kanfer JN, Bradley RM, Shapiro D (1966) Demonstration of a deficiency of glucocerebroside-cleaving enzyme in Gaucher’s disease. J Clin Invest 45:1112–1115CrossRefPubMedGoogle Scholar
  4. Charrow J, Andersson HC, Kaplan P et al (2004) Enzyme replacement therapy and monitoring for children with type 1 Gaucher disease: consensus recommendations. J Pediatr 144:112–120CrossRefPubMedGoogle Scholar
  5. Cox TM, Aerts JM, Andria G et al (2003) The role of the iminosugar N-butyldeoxynojirimycin (miglustat) in the management of type 1 (non-neuropathic) Gaucher disease: a position statement. J Inherit Metab Dis 26:513–526CrossRefPubMedGoogle Scholar
  6. de Fost M, Hollack CEM, Groener JEM et al (2006) Superior effects of high-dose enzyme replacement therapy in type 1 Gaucher disease on bone marrow involvement and chitotriosidase levels: a 2-center retrospective analysis. Blood 108:830–835CrossRefPubMedGoogle Scholar
  7. Doering T, Holleran WM, Potratz A, Vielhaber G, Elias PM, Suzuki K, Sandhoff K (1999) Sphingolipid activator proteins are required for epidermal permeability barrier formation. J Biol Chem 274:11038–11045CrossRefPubMedGoogle Scholar
  8. Elbein AD, Tropea JE, Mitchell M, Kaushal GP (1990) Kifunensine, a potent inhibitor of the glycoprotein processing mannosidase I. J Biol Chem 265:15599–15605PubMedGoogle Scholar
  9. Elstein D, Hollack C, Aerts JM et al (2004) Sustained therapeutic effects of oral miglustat (Zavesca, N-butyldeoxynojirimycin, OGT 918) in type 1 Gaucher disease. J Inherit Metab Dis 27:757–766CrossRefPubMedGoogle Scholar
  10. Elstein D, Dwek A, Attias D et al (2007) Oral maintenance clinical trial with miglustat for type 1 Gaucher disease: switch from or combination with intravenous enzyme replacement. Blood 110:2296–2301CrossRefPubMedGoogle Scholar
  11. Enquist IB, Nilsson E, Ooka A et al (2006) Effective cell and gene therapy in a murine model of Gaucher disease. Proc Natl Acad Sci USA 103:13819–13824CrossRefPubMedGoogle Scholar
  12. Futerman AH, Sussman JL, Horowitz M, Silman I, Zimran A (2004) New directions in the treatment of Gaucher disease. Trends Pharmacol Sci 25:147–151CrossRefPubMedGoogle Scholar
  13. Giraldo P, Latre P, Alfonso P et al (2006) Short-term effect of miglustat in every day clinical use in treatment-naïve or previously treated patients with type 1 Gaucher disease. Hematologica 91:703–706Google Scholar
  14. Grabowski GA, Barton NW, Pastores G et al (1995) Enzyme therapy in Type I Gaucher disease: comparative efficacy of mannose-terminated glucocerebrosidase from natural and recombinant sources. Ann Int Med 122:33–39PubMedGoogle Scholar
  15. Grabowski GA, Kacena K, Cole AJ et al (2009) Dose-response relationships for enzyme replacement therapy with imiglucerase/alglucerase in patients with Gaucher disease type 1. Genet Med 11:92–100CrossRefPubMedGoogle Scholar
  16. Hollak CE, Hughes D, van Schaik IN, Schwierin N, Bembi B (2009) Miglustat (Zavesca®) in type 1 Gaucher disease: 5-year results of a post-authorisation safety surveillance programme. Pharmacoepidemiol Drug Saf 18:770–777CrossRefPubMedGoogle Scholar
  17. Inokuchi J, Radin NS (1987) Preparation of the active isomer 1-phenyl-2-decanoyl-amino-3-morpholino-1-propanol inhibitor of murine glucocerebrosidase synthase. J Lipid Chem 28:565–571Google Scholar
  18. Jeyakumar M, Norflus F, Tifft CJ et al (2001) Enhanced survival in Sandhoff disease mice receiving a combination of substrate deprivation therapy and bone marrow transplantation. Blood 97:327–329CrossRefPubMedGoogle Scholar
  19. Jeyakumar M, Dwek R, Butters T, Platt F (2005) Storage solutions: treating lysosomal disorders of the brain. Nat Rev Neurosci 6:713–725PubMedGoogle Scholar
  20. Kishnani PS, DiRocco M, Kaplan P et al (2009) A randomized trial comparing the efficacy and safety of imiglucerase (Cerezyme) infusions every 4 weeks versus every 2 weeks in the maintenance therapy of adult patients with Gaucher disease type 1. Mol Genet Med. doi:10.1016/j.ymgme.2008.12.015 Google Scholar
  21. Langeveld M, Ghauharali KJM, Sauerwein HP et al (2008) Type 1 Gaucher disease, a glycosphingolipid storage disorder, is associated with insulin resistance. J Clin Endocrinol Metab 93:845–851CrossRefPubMedGoogle Scholar
  22. Lee L, Abe A, Shayman JA (1999) Improved inhibitors of glucosylceramide synthase. J Biol Chem 274:14662–14665CrossRefPubMedGoogle Scholar
  23. Lieberman RL, Wustman BA, Huertas P et al (2007) Structure of acid-β-glucosidase with pharmacological chaperone provides insight into Gaucher disease. Nature Chem Biol 3:101–107CrossRefGoogle Scholar
  24. McEachern K, Nietupski JB, Chuang W-L et al (2006) AAV8-mediated expression of glucocerebrosidase ameliorates the storage pathology in the visceral organs of a mouse model of Gaucher disease. J Gene Med 8:719–729CrossRefPubMedGoogle Scholar
  25. McEachern KA, Fung J, Komarnitsky S et al (2007) A specific and potent inhibitor of glucosylceramide synthase for substrate inhibition therapy of Gaucher disease. Mol Genet Metab 91:259–267CrossRefPubMedGoogle Scholar
  26. Mehta A (2008) Gaucher disease: unmet treatment needs. Acta Paediatr 97:83–87CrossRefGoogle Scholar
  27. Mu T-W, Ong DST, Wang Y-J, Balch WE, Yates JR, Segatori L, Kelly JW (2008) Chemical and biological approaches synergize to ameliorate protein-folding diseases. Cell 134:769–761CrossRefPubMedGoogle Scholar
  28. Pastores GM, Barnett NL, Kolodny EH (2005) An open-label, noncomparative study of miglustat in type 1 Gaucher disease: efficacy and tolerability over 24 months of treatment. Clin Ther 27:1215–1227CrossRefPubMedGoogle Scholar
  29. Pastores GM, Giraldo P, Cherin P, Mehta A (2009) Goal-oriented therapy with miglustat in Gaucher disease. Curr Med Res Opin 25:23–37CrossRefPubMedGoogle Scholar
  30. Platt FM, Neises GR, Reinkensmeier G et al (1997) Prevention of lysosomal storage in Tay-Sachs mice treated with N-butyldeoxynojirimycin. Science 276:428–431CrossRefPubMedGoogle Scholar
  31. Shaaltiel Y, Bartfeld D, Hashmueli S et al (2007) Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol J 5:579–590CrossRefPubMedGoogle Scholar
  32. Starzyk K, Richards S, Yee J, Smith SE, Kingma W (2007) The long-term international safety experience of imiglucerase therapy for Gaucher disease. Mol Genet Metab 90:157–163CrossRefPubMedGoogle Scholar
  33. Steet RA, Chung S, Wustman B, Powe A, Do H, Kornfeld SA (2006) The iminosugar isofagomine increases the activity of N370S mutant acid β-glucosidase in Gaucher fibroblasts by several mechanisms. Proc Natl Acad Sci USA 103:13813–13818CrossRefPubMedGoogle Scholar
  34. van Patten SM, Hughes H, Huff MR et al (2007) Effect of mannose chain length on targeting of glucocerebrosidase for enzyme replacement therapy of Gaucher disease. Glycobiology 17:467–478CrossRefPubMedGoogle Scholar
  35. Weinreb NJ, Charrow J, Andersson HC et al (2002) Effectiveness of enzyme replacement therapy in 1028 patients with type 1 Gaucher disease after 2-5 years of treatment: a report from the Gaucher Registry. Am J Med 113:112–119CrossRefPubMedGoogle Scholar
  36. Weinreb N, Taylor J, Cox T, Yee J, vom Dahl S (2008) A benchmark analysis of the achievement of therapeutic goals for type 1 Gaucher disease patients treated with imiglucerase. Am J Hematol 83:890–895CrossRefPubMedGoogle Scholar
  37. Wraith JE (2006) Limitations of enzyme replacement therapy; current and future. J Inherit Metab Dis 29:442–447CrossRefPubMedGoogle Scholar
  38. Xu Y-H, Quinn B, Witte D, Grabowski GA (2003) Viable mouse models of acid β-glucosidase deficiency. Am J Pathol 163:2093–2101PubMedGoogle Scholar
  39. Yu Z, Sawkar AR, Whalen LJ, Wong C-H, Kelly JW (2007) Isofagomine- and 2, 5-anhydro-2, 5-imino-D-glucitol-based glucocerebrosidase pharmacological chaperones for Gaucher disease intervention. J Med Chem 50:94–100CrossRefPubMedGoogle Scholar
  40. Zhao H, Przybylska M, Wu I-H et al (2007) Inhibiting glycosphingolipid synthesis improves glycemic control and insulin sensitivity in animal models of type 2 diabetes. Diabetes 56:1210–1218CrossRefPubMedGoogle Scholar
  41. Zimran A, Ilan Y, Elstein D (2009) Enzyme replacement therapy for mild patients with Gaucher disease. Am J Hematol. doi:10.1002/ajh.21369 PubMedGoogle Scholar

Copyright information

© SSIEM and Springer 2010

Authors and Affiliations

  • John Marshall
    • 1
  • Kerry Anne McEachern
    • 1
  • Wei-Lien Chuang
    • 1
  • Elizabeth Hutto
    • 1
  • Craig S. Siegel
    • 1
  • James A. Shayman
    • 2
  • Greg A. Grabowski
    • 3
  • Ronald K. Scheule
    • 1
  • Diane P. Copeland
    • 1
  • Seng H. Cheng
    • 1
  1. 1.Genzyme CorporationFraminghamUSA
  2. 2.University of MichiganAnn ArborUSA
  3. 3.Cincinnati Children’s Hospital Research FoundationCincinnatiUSA

Personalised recommendations