Journal of Inherited Metabolic Disease

, Volume 32, Issue 3, pp 416–423 | Cite as

Enzyme analysis for Pompe disease in leukocytes; superior results with natural substrate compared with artificial substrates

  • O. P. van Diggelen
  • L. F. Oemardien
  • N. A. M. E. van der Beek
  • M. A. Kroos
  • H. K. Wind
  • Y. V. Voznyi
  • D. Burke
  • M. Jackson
  • B. G. Winchester
  • A. J. J. Reuser
Original Article

Summary

Enzyme analysis for Pompe disease in leukocytes has been greatly improved by the introduction of acarbose, a powerful inhibitor of interfering α-glucosidases, which are present in granulocytes but not in lymphocytes. Here we show that the application of acarbose in the enzymatic assay employing the artificial substrate 4-methylumbelliferyl-α-d-glucoside (MU-αGlc) is insufficient to clearly distinguish patients from healthy individuals in all cases. Also, the ratios of the activities without/with acarbose only marginally discriminated Pompe patients and healthy individuals. By contrast, when the natural substrate glycogen is used, the activity in leukocytes from patients (n = 82) with Pompe disease is at most 17% of the lowest control value. The use of artificial substrate in an assay with isolated lymphocytes instead of total leukocytes is a poor alternative as blood samples older than one day invariably yield lymphocyte preparations that are contaminated with granulocytes. To diagnose Pompe disease in leukocytes we recommend the use of glycogen as substrate in the presence of acarbose. This assay unequivocally excludes Pompe disease. To also exclude pseudo-deficiency of acid α-glucosidase caused by the sequence change c.271G>A (p.D91N or GAA2; homozygosity in approximately 1:1000 caucasians), a second assay employing MU-αGlc substrate plus acarbose or DNA analysis is required.

Abbreviations

DBS

dried blood spot on filter paper

GSD II

glycogen storage disease type II, Pompe disease, acid maltase deficiency

Glcn

Glycogen

MU

4-methylumbelliferone

MU-αGlc

4-methylumbelliferyl-α-d-glucoside

NEM

N-ethylmaleimide

References

  1. Bembi B, Cerini E, Danesino C, et al (2008) Diagnosis of glycogenosis type II. Neurology 71: S4–11. doi:10.1212/WNL.0b013e31818da91e.CrossRefGoogle Scholar
  2. Chien YH, Chiang SC, Zhang XK, et al (2008) Early detection of Pompe disease by newborn screening is feasible: results from the Taiwan screening program. Pediatrics 122: e39–45. doi:10.1542/peds.2007-2222.CrossRefGoogle Scholar
  3. Dajnoki A, Muhl A, Fekete G, et al (2008) Newborn screening for Pompe disease by measuring acid alpha-glucosidase activity using tandem mass spectrometry. Clin Chem 54: 1624–1629. doi:10.1373/clinchem.2008.107722.PubMedCrossRefGoogle Scholar
  4. De Jesus VR, Zhang XK, Keutzer J, et al (2009) Development and evaluation of quality control dried blood spot materials in newborn screening for lysosomal storage disorders. Clin Chem 55: 158–164. doi:10.1373/clinchem.2008.111864.PubMedCrossRefGoogle Scholar
  5. Gasparotto N, Tomanin R, Frigo AC, et al (2008) Rapid diagnostic testing procedures for lysosomal storage disorders: alpha-glucosidase and beta-galactosidase assays on dried blood spots. Clin Chim Acta 402(1–2): 38–41. doi:10.1016/j.cca.2008.12.006.PubMedGoogle Scholar
  6. Gelb MH, Turecek F, Scott CR, Chamoles NA (2006) Direct multiplex assay of enzymes in dried blood spots by tandem mass spectrometry for the newborn screening of lysosomal storage disorders. J Inherit Metab Dis 29: 397–404. doi:10.1007/s10545-006-0265-4.PubMedCrossRefGoogle Scholar
  7. Hirschhorn R, Reuser AJJ (2001) Glycogen storage disease type II (GSDII). In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc. eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edn. New York: McGraw-Hill, 3389–3420.Google Scholar
  8. Jack RM, Gordon C, Scott CR, Kishnani PS, Bali D (2006) The use of acarbose inhibition in the measurement of acid alpha-glucosidase activity in blood lymphocytes for the diagnosis of Pompe disease. Genet Med 8: 307–312. doi:10.1097/01.gim.0000217785.19262.9e.PubMedGoogle Scholar
  9. Kallwass H, Carr C, Gerrein J, (2007) Rapid diagnosis of late-onset Pompe disease by fluorometric assay of alpha-glucosidase activities in dried blood spots. Mol Genet Metab 90: 449–452. doi:10.1016/j.ymgme.2006.12.006.PubMedCrossRefGoogle Scholar
  10. Li Y, Scott CR, Chamoles NA, et al (2004) Direct multiplex assay of lysosomal enzymes in dried blood spots for newborn screening. Clin Chem 50: 1785–1795. doi:10.1373/clinchem.2004.035907.PubMedCrossRefGoogle Scholar
  11. Martiniuk F, Bodkin M, Tzall S, Hirschhorn R (1990) Identification of the base-pair substitution responsible for a human acid α-glucosidase allele with lower “affinity” for glycogen (GAA 2) and transient gene expression in deficient cells. Am J Hum Genet 47: 440–445.PubMedGoogle Scholar
  12. Okumiya T, Keulemans JL, Kroos MA, et al (2006) A new diagnostic assay for glycogen storage disease type II in mixed leukocytes. Mol Genet Metab 88: 22–28. doi:10.1016/j.ymgme.2005.10.016.PubMedCrossRefGoogle Scholar
  13. Swallow DM, Corney G, Harris H, Hirschhorn R (1975) Acid α-glucosidase: a new polymorphism in man demonstrable by ‘affinity’ electrophoresis. Ann Hum Genet 38: 391–406. doi:10.1111/j.1469-1809.1975.tb00629.x.PubMedCrossRefGoogle Scholar
  14. Swallow DM, Kroos M, Van der Ploeg AT, et al (1989) An investigation of the properties and possible clinical significance of the lysosomal α-glucosidase GAA*2 allele. Ann Hum Genet 53: 177–184. doi:10.1111/j.1469-1809.1989.tb01782.x.PubMedCrossRefGoogle Scholar
  15. van der Ploeg AT, Reuser AJ (2008) Pompe’s disease. Lancet 372: 1342–1353. doi:10.1016/S0140-6736(08)61555-X.PubMedCrossRefGoogle Scholar
  16. van Diggelen OP, Zhao H, Kleijer WJ, et al (1990) A fluorimetric enzyme assay for the diagnosis of Morquio disease type A (MPS IV A). Clin Chim Acta 187: 131–139. doi:10.1016/0009-8981(90)90339-T.PubMedCrossRefGoogle Scholar
  17. Winchester B, Bali D, Bodamer OA, et al. (2008) Methods for a prompt and reliable laboratory diagnosis of Pompe disease: report from an international consensus meeting. Mol Genet Metab 93: 275–281. doi:10.1016/j.ymgme.2007.09.006.PubMedCrossRefGoogle Scholar
  18. Zhang H, Kallwass H, Young SP, et al (2006) Comparison of maltose and acarbose as inhibitors of maltase-glucoamylase activity in assaying acid alpha-glucosidase activity in dried blood spots for the diagnosis of infantile Pompe disease. Genet Med 8: 302–306. doi:10.1097/01.gim.0000217781.66786.9b.PubMedCrossRefGoogle Scholar
  19. Zhang XK, Elbin CS, Chuang WL, et al (2008) Multiplex enzyme assay screening of dried blood spots for lysosomal storage disorders by using tandem mass spectrometry. Clin Chem 54: 1725–1728. doi:10.1373/clinchem.2008.104711.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • O. P. van Diggelen
    • 1
    • 8
  • L. F. Oemardien
    • 1
  • N. A. M. E. van der Beek
    • 2
  • M. A. Kroos
    • 1
  • H. K. Wind
    • 3
  • Y. V. Voznyi
    • 4
  • D. Burke
    • 5
  • M. Jackson
    • 6
  • B. G. Winchester
    • 7
  • A. J. J. Reuser
    • 1
  1. 1.Department of Clinical GeneticsErasmus University Medical CentreRotterdamThe Netherlands
  2. 2.Department of NeurologyErasmus University Medical CentreRotterdamThe Netherlands
  3. 3.Department of ImmunologyErasmus University Medical CentreRotterdamThe Netherlands
  4. 4.Institute of Organic ChemistryMoscowRussia
  5. 5.The Enzyme Laboratory, Department of Chemical PathologyGreat Ormond Street HospitalLondonUK
  6. 6.Supra-regional Assay Service for Genetic Enzyme DefectsGuys HospitalLondonUK
  7. 7.Biochemistry Research Group, UCL Institute of Child HealthUniversity College LondonLondonUK
  8. 8.Department of Clinical GeneticsErasmus MCRotterdamThe Netherlands

Personalised recommendations