Advertisement

Journal of Inherited Metabolic Disease

, Volume 32, Issue 3, pp 424–440 | Cite as

The pharmacological chaperone 1-deoxygalactonojirimycin increases α-galactosidase A levels in Fabry patient cell lines

  • E. R. Benjamin
  • J. J. Flanagan
  • A. Schilling
  • H. H. Chang
  • L. Agarwal
  • E. Katz
  • X. Wu
  • C. Pine
  • B. Wustman
  • R. J. Desnick
  • D. J. Lockhart
  • K. J. Valenzano
Original Article

Summary

Fabry disease is an X-linked lysosomal storage disorder caused by mutations in the gene encoding α-galactosidase A (α-Gal A), with consequent accumulation of its major glycosphingolipid substrate, globotriaosylceramide (GL-3). Over 500 Fabry mutations have been reported; approximately 60% are missense. The iminosugar 1-deoxygalactonojirimycin (DGJ, migalastat hydrochloride, AT1001) is a pharmacological chaperone that selectively binds α-Gal A, increasing physical stability, lysosomal trafficking, and cellular activity. To identify DGJ-responsive mutant forms of α-Gal A, the effect of DGJ incubation on α-Gal A levels was assessed in cultured lymphoblasts from males with Fabry disease representing 75 different missense mutations, one insertion, and one splice-site mutation. Baseline α-Gal A levels ranged from 0 to 52% of normal. Increases in α-Gal A levels (1.5- to 28-fold) after continuous DGJ incubation for 5 days were seen for 49 different missense mutant forms with varying EC50 values (820 nmol/L to >1 mmol/L). Amino acid substitutions in responsive forms were located throughout both structural domains of the enzyme. Half of the missense mutant forms associated with classic (early-onset) Fabry disease and a majority (90%) associated with later-onset Fabry disease were responsive. In cultured fibroblasts from males with Fabry disease, the responses to DGJ were comparable to those of lymphoblasts with the same mutation. Importantly, elevated GL-3 levels in responsive Fabry fibroblasts were reduced after DGJ incubation, indicating that increased mutant α-Gal A levels can reduce accumulated substrate. These data indicate that DGJ merits further evaluation as a treatment for patients with Fabry disease with various missense mutations.

Keywords

Fabry Disease Mutant Form Agalsidase Beta Fabry Patient Pharmacological Chaperone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

DGJ

1-deoxygalactonojirimycin hydrochloride (AT1001: migalastat hydrochloride)

EC50

effective concentration 50% (the concentration of DGJ yielding 50% of the maximal effect)

GalNac

N-acetyl-d-galactosamine

GL-3

globotriaosylceramide

GLA

gene encoding α-Gal A

α-Gal A

α-galactosidase A

4-MU

4-methylumbelliferone

4-MUG

4-MU-α-d-galactopyranoside

References

  1. Asano N, Ishii S, Kizu H, et al (2000) In vitro inhibition and intracellular enhancement of lysosomal alpha-galactosidase A activity in Fabry lymphoblasts by 1-deoxygalactonojirimycin and its derivatives. Eur J Biochem 267: 4179–4186. doi: 10.1046/j.1432-1327.2000.01457.x.PubMedCrossRefGoogle Scholar
  2. Askari H, Kaneski C, Semino-Mora C, et al (2007) Cellular and tissue localization of globotriaosylceramide in Fabry disease. Virchows Arch 451: 823–834. doi: 10.1007/s00428-007-0468-6.PubMedCrossRefGoogle Scholar
  3. Bekri S, Enica A, Ghafari T, et al (2005) Fabry disease in patients with end-stage renal failure: the potential benefits of screening. Nephron Clin Pract 101: c33–38. doi: 10.1159/000085709.CrossRefGoogle Scholar
  4. Bishop D, Grabowski G, Desnick R (1981) Fabry disease: An asymptomatic hemizygote with significant residual alpha-galactosidase A activity. Am J Hum Genet 33: 71A.Google Scholar
  5. Brady RO, Gal AE, Bradley RM, Martensson E, Warshaw AL, Laster L (1967) Enzymatic defect in Fabry’s disease: ceramidetrihexosidase deficiency. N Engl J Med 276: 1163–1167.PubMedGoogle Scholar
  6. Branton MH, Schiffmann R, Sabnis SG, et al (2002) Natural history of Fabry renal disease: influence of alpha-galactosidase A activity and genetic mutations on clinical course. Medicine 81: 122–138. doi: 10.1097/00005792-200203000-00003.PubMedCrossRefGoogle Scholar
  7. Chimenti C, Pieroni M, Morgante E, et al (2004) Prevalence of Fabry disease in female patients with late-onset hypertrophic cardiomyopathy. Circulation 110: 1047–1053. doi: 10.1161/01.CIR.0000139847.74101.03.PubMedCrossRefGoogle Scholar
  8. Desnick R, Ioannou Y, Eng C (2001) alpha-Galactosidase A deficiency; Fabry disease. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc. eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edn. New York: McGraw-Hill, 3507–3534.Google Scholar
  9. Fan J-Q (2003) A contradictory treatment for lysosomal storage disorders: inhibitors enhance mutant enzyme activity. Trends Pharmacol Sci 24: 355–360. doi: 10.1016/S0165-6147(03)00158-5.PubMedCrossRefGoogle Scholar
  10. Fan J-Q, Ishii S, Asano N, Suzuki Y (1999) Accelerated transport and maturation of lysosomal α-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nature Med 5: 112–115. doi: 10.1038/4801.PubMedCrossRefGoogle Scholar
  11. Garman S (2007) Structure–function relationships in alpha-galactosidase A. Acta Paediatr Suppl 96: 6–16. doi: 10.1111/j.1651-2227.2007.00097.x.CrossRefGoogle Scholar
  12. Garman SC, Garboczi DN (2004) The molecular defect leading to Fabry disease: structure of human alpha-galactosidase. J Mol Biol 337: 319–335. doi: 10.1016/j.jmb.2004.01.035.PubMedCrossRefGoogle Scholar
  13. Guex N, Peitsch M (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18: 2714–2723. doi: 10.1002/elps.1150181505.PubMedCrossRefGoogle Scholar
  14. Ioannou YA, Bishop DF, Desnick RJ (1992) Overexpression of human alpha-galactosidase A results in its intracellular aggregation, crystallization in lysosomes, and selective secretion. J Cell Biol 119: 1137–1150. doi: 10.1083/jcb.119.5.1137.PubMedCrossRefGoogle Scholar
  15. Ioannou YA, Zeidner KM, Grace ME, Desnick R (1998) Human alpha-galactosidase A: glycosylation site 3 is essential for enzyme solubility. Biochem J 332: 789–797.PubMedGoogle Scholar
  16. Ishii S, Kase R, Okumiya T, Sakuraba H, Suzuki Y (1996) Aggregation of the inactive form of human alpha-galactosidase in the endoplasmic reticulum. Biochem Biophys Res Commun 220: 812–815. doi: 10.1006/bbrc.1996.0486.PubMedCrossRefGoogle Scholar
  17. Ishii S, Chang HH, Kawasaki K, et al (2007) Mutant alpha-galacatosidase A enzymes identified in Fabry patients with residual enzyme activity: Biochemical characterization and restoration of normal intracellular processing by 1-deoxygalactonojirimycin. Biochem J 406: 285–295. doi: 10.1042/BJ20070479.PubMedCrossRefGoogle Scholar
  18. Ishii S, Chang H, Yoshioka H, et al (2009) Preclinical efficacy and safety of 1-deoxygalactonojirimycin in mice for Fabry disease. J Pharmacol Exp Ther 328(3): 723–731.PubMedCrossRefGoogle Scholar
  19. Khanna R, Benjamin ER, Soska R, et al (2007) The pharmacological chaperone AT1001 reduces globotriaosylceramide substrate levels in Fabry transgenic mice and increases α-galactosidase. A levels in vitro, in vivo and in healthy volunteers. Abstract 2250/W. Presented at the American Society of Human Genetics Conference, San Diego, October 23–27, 2007.Google Scholar
  20. Kint JA (1970) Fabry’s disease: alpha-galactosidase deficiency. Science 167: 1268–1269. doi: 10.1126/science.167.3922.1268.PubMedCrossRefGoogle Scholar
  21. Kotanko P, Kramar R, Devrnja D, et al (2004) Results of a nationwide screening for Anderson-Fabry disease among dialysis patients. J Am Soc Nephrol 15: 1323–1329. doi: 10.1097/01.ASN.0000124671.61963.1E.PubMedCrossRefGoogle Scholar
  22. Lemansky P, Bishop D, Desnick R, Hasilik A, von Figura K (1987) Synthesis and processing of alpha-galactosidase A in human fibroblasts. Evidence for different mutations in Fabry disease. J Biol Chem 262: 2062–2065.PubMedGoogle Scholar
  23. Matsuzawa F, Aikawa S-I, Doi H, Okumiya T, Sakuraba H (2005) Fabry disease: correlation between structural changes in α-galactosidase, and clinical and biochemical phenotypes. Hum Genet 117: 317–328. doi: 10.1007/s00439-005-1300-5.PubMedCrossRefGoogle Scholar
  24. Mayes JS, Scheerer JB, Sifers RN, Donaldson ML (1981) Differential assay for lysosomal alpha-galactosidases in human tissues and its application to Fabry’s disease. Clin Chim Acta 112: 247–251. doi: 10.1016/0009-8981(81)90384-3.PubMedCrossRefGoogle Scholar
  25. Monserrat L, Gimeno-Blanes J, Marin F, et al (2007) Prevalence of Fabry disease in a cohort of 508 untrelated patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 50: 2399–2403. doi: 10.1016/j.jacc.2007.06.062.PubMedCrossRefGoogle Scholar
  26. Nakao S, Takenaka T, Maeda M, et al (1995) An atypical variant of Fabry’s disease in men with left ventricular hypertrophy. N Engl J Med 333: 288–293. doi: 10.1056/NEJM199508033330504.PubMedCrossRefGoogle Scholar
  27. Nakao S, Kodama C, Takenaka T, et al (2003) Fabry disease: detection of undiagnosed hemodialysis patients and identification of a ‘renal variant’ phenotype. Kidney Int 64: 801–807. doi: 10.1046/j.1523-1755.2003.00160.x.PubMedCrossRefGoogle Scholar
  28. Neitzel H (1986) A routine method for the establishment of permanent growing lymphoblastoid cell lines. Hum Genet 73: 320–326. doi: 10.1007/BF00279094.PubMedCrossRefGoogle Scholar
  29. Okumiya T, Ishii S, Takenaka T, et al (1995) Galactose stabilizes various missense mutants of alpha-galactosidase in Fabry disease. Biochem Biophys Res Commun 214: 1219–1224. doi: 10.1006/bbrc.1995.2416.PubMedCrossRefGoogle Scholar
  30. Rolfs A, Bottcher T, Zschiesche M, et al (2005) Prevalence of Fabry disease in patients with cryptogenic stroke: a prospective study. Lancet 366: 1794–1796. doi: 10.1016/S0140-6736(05)67635-0.PubMedCrossRefGoogle Scholar
  31. Sachdev B, Takenaka T, Teraguchi H, et al (2002) Prevalence of Anderson-Fabry disease in male patients with late onset hypertrophic cardiomyopathy. Circulation 105: 1407–1411. doi: 10.1161/01.CIR.0000012626.81324.38.PubMedCrossRefGoogle Scholar
  32. Schiffmann R, Germain DP, Castelli J, et al (2008) Phase 2 clinical trials of the pharmacological chaperone AT1001 for the treatment of Fabry disease. Abstract 768/T. Presented at the American Society of Human Genetics Conference, Philadelphia, November 11–15, 2008.Google Scholar
  33. Shabbeer J, Yasuda M, Luca E, Desnick R (2002) Fabry disease: 45 novel mutations in the alpha-galactosidase A gene causing the classical phenotype. Mol Genet Metab 76: 23–30. doi: 10.1016/S1096-7192(02)00012-4.PubMedCrossRefGoogle Scholar
  34. Shabbeer J, Yasuda M, Benson S, Desnick R (2006) Fabry disease: Identification of 50 novel α-galactosidase A mutations causing the classic phenotype and three-dimensional structural analysis of 29 missense mutations. Hum Genomics 2: 297–309.PubMedGoogle Scholar
  35. Shin S-H, Murray G, Kluepfel-Stahl S, et al (2007) Screening for pharmacological chaperones in Fabry disease. Biochem Biophys Res Commun 359: 168–173. doi: 10.1016/j.bbrc.2007.05.082.PubMedCrossRefGoogle Scholar
  36. Shin S-H, Kluepfel-Stahl S, Cooney A, et al (2008) Prediction of response of mutated alpha-galactosidase A to a pharmacological chaperone. Pharmacogenet Genomics 18: 773–780. doi: 10.1097/FPC.0b013e32830500f4.PubMedCrossRefGoogle Scholar
  37. Spada M, Pagliardini S, Yasuda M, et al (2006) High incidence of later-onset Fabry disease revealed by newborn screening. Am J Hum Genet 79: 31–40. doi: 10.1086/504601.PubMedCrossRefGoogle Scholar
  38. Stenson PD, Ball EV, Mort M, et al (2003) Human gene mutation database (HGMD): 2003 update. Hum Mutat 21: 577–581. doi: 10.1002/humu.10212.PubMedCrossRefGoogle Scholar
  39. von Scheidt W, Eng C, Fitzmaurice T, et al (1991) An atypical variant of Fabry’s disease with manifestations confined to the myocardium. N Engl J Med 324: 395–399.Google Scholar
  40. Yam GH, Zuber C, Roth J (2005) A synthetic chaperone corrects the trafficking defect and disease phenotype in a protein misfolding disorder. FASEB J 19: 12–18. doi: 10.1096/fj.04-2375com.PubMedCrossRefGoogle Scholar
  41. Yam GH, Bosshard N, Zuber C, Steinmann B, Roth J (2006) Pharmacological chaperone corrects lysosomal storage in Fabry disease caused by trafficking-incompetent variants. Am J Physiol Cell Physiol 290: C1076–1082. doi: 10.1152/ajpcell.00426.2005.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • E. R. Benjamin
    • 1
  • J. J. Flanagan
    • 1
  • A. Schilling
    • 1
  • H. H. Chang
    • 1
  • L. Agarwal
    • 1
  • E. Katz
    • 1
  • X. Wu
    • 1
  • C. Pine
    • 1
  • B. Wustman
    • 1
  • R. J. Desnick
    • 2
  • D. J. Lockhart
    • 1
  • K. J. Valenzano
    • 1
  1. 1.Amicus TherapeuticsCranburyUSA
  2. 2.Department of Genetics and Genomic SciencesMount Sinai School of MedicineNew YorkUSA

Personalised recommendations