Journal of Inherited Metabolic Disease

, Volume 32, Issue 3, pp 333–342

Disorders of biopterin metabolism

Symposium on Neurotransmitter Disorders

Summary

Defects in the metabolism or regeneration of tetrahydrobiopterin (BH4) were initially discovered in patients with hyperphenylalaninaemia who had progressive neurological deterioration despite optimal metabolic control (malignant hyperphenylalaninaemia). BH4 is an essential cofactor not only for phenylalanine hydroxylase, but also for tyrosine and two tryptophan hydroxylases, three nitric oxide synthases, and glyceryl-ether monooxygenase. Defective activity of tyrosine and tryptophan hydroxylases explains the neurological deterioration in patients with BH4 deficiency with progressive mental and physical retardation, central hypotonia and peripheral spasticity, seizures and microcephaly. Five separate genetic conditions affect BH4 synthesis or regeneration: deficiency of GTP cyclohydrolase I, 6-pyruvoyl tetrahydropterin synthase, sepiapterin reductase, dihydropteridine reductase (DHPR) and pterin-4α-carbinolamine dehydratase. Only the latter of these conditions is relatively benign and is associated with transient hyperphenylalaninaemia. All these conditions can be identified in newborns by an elevated phenylalanine, with the exception of sepiapterin reductase and the dominant form of GTP cyclohydrolase I deficiency that results in biopterin deficiency/insufficiency only in the brain. Diagnosis relies on the measurement of pterin metabolites in urine, dihydropteridine reductase in blood spots, neurotransmitters and pterins in the CSF and on the demonstration of reduced enzyme activity (red blood cells or fibroblasts) or causative mutations in the relative genes. The outcome of BH4 deficiency is no longer malignant if therapy is promptly initiated to reduce plasma phenylalanine levels and replace missing neurotransmitters. This is accomplished by a special diet and/or BH4 supplements and administration of l-dopa, carbidopa, 5-hydroxytryptophan, and, in certain cases, a MAO-B inhibitor. Patients with DHPR deficiency also require folinic acid supplements, since DHPR may help in maintaining folate in the tetrahydro form. Several patients with BH4 deficiency treated since the newborn period have reached adult age with good outcome.

Abbreviations

BH4

tetrahydrobiopterin

CSF

cerebrospinal fluid

DHPR

dihydropteridine reductase

GFRP

GTP cyclohydrolase I feedback regulatory protein

GTPCH

GTP cyclohydrolase I

5-HIIA

5-hydroxyindoleacetic acid

HVA

homovanillic acid

PCD

pterin-4-α-carbinolamine dehydratase

PTPS

6-pyruvoyl-tetrahydropterin synthase

SR

sepiapterin reductase

References

  1. Abeling NG, Duran M, Bakker HD, et al (2006) Sepiapterin reductase deficiency an autosomal recessive DOPA-responsive dystonia. Mol Genet Metab 89(1–2): 116–120. doi:10.1016/j.ymgme.2006.03.010.PubMedCrossRefGoogle Scholar
  2. al Aqeel A, Ozand PT, Gascon GG, Hughes H, Reynolds CT,Subramanyam SB (1992) Response of 6-pyruvoyl-tetrahydropterin synthase deficiency to tetrahydrobiopterin. J Child Neurol 7(Supplement): S26–S30.PubMedGoogle Scholar
  3. Bartholomé K (1974) Letter: a new molecular defect in phenylketonuria. Lancet 304(7896): 1580. doi:10.1016/S0140-6736(74)90337-7.CrossRefGoogle Scholar
  4. Bonafe L, Thony B, Penzien JM, Czarnecki B, Blau N (2001) Mutations in the sepiapterin reductase gene cause a novel tetrahydrobiopterin-dependent monoamine-neurotransmitter deficiency without hyperphenylalaninemia. Am J Hum Genet 69(2): 269–277. doi:10.1086/321970.PubMedCrossRefGoogle Scholar
  5. Concolino D, Muzzi G, Rapsomaniki M, Moricca MT, Pascale MG, Strisciuglio P (2008) Serum prolactin as a tool for the follow-up of treated DHPR-deficient patients. J Inherit Metab Dis. doi:10.1007/s10545-007-0788-3.
  6. Curtius HC, Adler C, Rebrin I, Heizmann C, Ghisla S (1990) 7-Substituted pterins: formation during phenylalanine hydroxylation in the absence of dehydratase. Biochem Biophys Res Commun 172(3): 1060–1066. doi:10.1016/0006-291X(90)91554-6.PubMedCrossRefGoogle Scholar
  7. de Sanctis L, Alliaudi C, Spada M, et al (2000) Genotype-phenotype correlation in dihydropteridine reductase deficiency. J Inherit Metab Dis 23(4): 333–337. doi:10.1023/A: 1005662710891.PubMedCrossRefGoogle Scholar
  8. Dudešek A, Roschinger W, Muntau AC (2001) Molecular analysis and long-term follow-up of patients with different forms of 6-pyruvoyl-tetrahydropterin synthase deficiency. Eur J Pediatr 160(5): 267–276. doi:10.1007/s004310000722.PubMedCrossRefGoogle Scholar
  9. Echenne B, Roubertie A, Assmann B (2006) Sepiapterin reductase deficiency: clinical presentation and evaluation of long-term therapy. Pediatr Neurol 35(5): 308–313. doi:10.1016/j.pediatrneurol.2006.05.006.PubMedCrossRefGoogle Scholar
  10. Friedman J, Hyland K, Blau N, MacCollin M (2006) Dopa-responsive hypersomnia and mixed movement disorder due to sepiapterin reductase deficiency. Neurology 67(11): 2032–2035. doi:10.1212/01.wnl.0000247274.21261.b4.PubMedCrossRefGoogle Scholar
  11. Hevel JM, Stewart JA, Gross KL, Ayling JE (2006) Can the DCoHalpha isozyme compensate in patients with 4a-hydroxy-tetrahydrobiopterin dehydratase/DCoH deficiency? Mol Genet Metab 88(1): 38–46. doi:10.1016/j.ymgme.2005.11.014.PubMedCrossRefGoogle Scholar
  12. Hopkins FG (1889) Note on a yellow pigment from butterflies. Nature 40: 355.Google Scholar
  13. Hopkins FG (1942) A contribution to the chemistry of pterins. Proc R Soc 130: 359–379.CrossRefGoogle Scholar
  14. Horvath GA, Stockler-Ipsiroglu SG, Salvarinova-Zivkovic R, et al (2008) Autosomal recessive GTP cyclohydrolase I deficiency without hyperphenylalaninemia: evidence of a phenotypic continuum between dominant and recessive forms. Mol Genet Metab 94(1): 127–131. doi:10.1016/j.ymgme.2008.01.003.PubMedCrossRefGoogle Scholar
  15. Hyland K (2007) Inherited disorders affecting dopamine and serotonin: critical neurotransmitters derived from aromatic amino acids. J Nutr 137(6 Supplement 1): 1568S–1572S; discussion 1573S–1575S.PubMedGoogle Scholar
  16. Hyland K (2008) Clinical utility of monoamine neurotransmitter metabolite analysis in cerebrospinal fluid. Clin Chem 54(4): 633–641. doi:10.1373/clinchem.2007.099986.PubMedCrossRefGoogle Scholar
  17. Irons M, Levy HL, O’Flynn ME, et al (1987) Folinic acid therapy in treatment of dihydropteridine reductase deficiency. J Pediatr 110(1): 61–67. doi:10.1016/S0022-3476(87)80289-5.PubMedCrossRefGoogle Scholar
  18. Jaggi L, Zurfluh MR, Schuler A, et al (2008) Outcome and long-term follow-up of 36 patients with tetrahydrobiopterin deficiency. Mol Genet Metab 93(3): 295–305. doi:10.1016/j.ymgme.2007.10.004.PubMedCrossRefGoogle Scholar
  19. Katusic ZS, d’Uscio LV, Nath KA (2009) Vascular protection by tetrahydrobiopterin: progress and therapeutic prospects. Trends Pharmacol Sci 30(1): 48–54.Google Scholar
  20. Kaufman S (1963) The structure of the phenylalanine-hydroxylation cofactor. Proc Natl Acad Sci U S A 50: 1085–1093. doi:10.1073/pnas.50.6.1085.PubMedCrossRefGoogle Scholar
  21. Kaufman S, Holtzman NA, Milstien S, Butler LJ, Krumholz A (1975) Phenylketonuria due to a deficiency of dihydropteridine reductase. N Engl J Med 293(16): 785–790.PubMedCrossRefGoogle Scholar
  22. Kaufman S, Berlow S, Summer GK, et al (1978) Hyperphenylalaninemia due to a deficiency of biopterin. A variant form of phenylketonuria. N Engl J Med 299(13): 673–679.PubMedGoogle Scholar
  23. Kaufman S, Kapatos G, McInnes RR, Schulman JD, Rizzo WB (1982) Use of tetrahydropterins in the treatment of hyperphenylalaninemia due to defective synthesis of tetrahydrobiopterin: evidence that peripherally administered tetrahydropterins enter the brain. Pediatrics 70(3): 376–380.PubMedGoogle Scholar
  24. Komori H, Matsuishi T, Yamada S, Yamashita Y, Ohtaki E, Kato H (1995) Cerebrospinal fluid biopterin and biogenic amine metabolites during oral R-THBP therapy for infantile autism. J Autism Dev Disord 25(2): 183–193. doi:10.1007/BF02178503.PubMedCrossRefGoogle Scholar
  25. Lee NC, Cheng LY, Liu TT, Hsiao KJ, Chiu PC, Niu DM (2006) Long-term follow-up of Chinese patients who received delayed treatment for 6-pyruvoyl-tetrahydropterin synthase deficiency. Mol Genet Metab 87(2): 128–134. doi:10.1016/j.ymgme.2005.09.028.PubMedCrossRefGoogle Scholar
  26. Liu KM, Liu TT, Lee NC, Cheng LY, Hsiao KJ, Niu DM (2008) Long-term follow-up of Taiwanese Chinese patients treated early for 6-pyruvoyl-tetrahydropterin synthase deficiency. Arch Neurol 65(3): 387–392. doi:10.1001/archneur.65.3.387.PubMedCrossRefGoogle Scholar
  27. Longhi R, Valsasina R, Butte C, Paccanelli S, Riva E, Giovannini M (1985) Cranial computerized tomography in dihydropteridine reductase deficiency. J Inherit Metab Dis 8(3): 109–112. doi:10.1007/BF01819291.PubMedCrossRefGoogle Scholar
  28. Maita N, Okada K, Hatakeyama K, Hakoshima T (2002) Crystal structure of the stimulatory complex of GTP cyclohydrolase I and its feedback regulatory protein GFRP. Proc Natl Acad Sci U S A 99(3): 1212–1217. doi:10.1073/pnas.022646999.PubMedCrossRefGoogle Scholar
  29. Neville BG, Parascandalo R, Farrugia R, Felice A (2005) Sepiapterin reductase deficiency: a congenital dopa-responsive motor and cognitive disorder. Brain 128(Pt 10): 2291–2296. doi:10.1093/brain/awh603.PubMedCrossRefGoogle Scholar
  30. Niederwieser A, Blau N, Wang M, Joller P, Atares M, Cardesa-Garcia J (1984) GTP cyclohydrolase I deficiency, a new enzyme defect causing hyperphenylalaninemia with neopterin, biopterin, dopamine, and serotonin deficiencies and muscular hypotonia. Eur J Pediatr 141(4): 208–214. doi:10.1007/BF00572762.PubMedCrossRefGoogle Scholar
  31. Ogawa A, Kanazawa M, Takayanagi M, Kitani Y, Shintaku H, Kohno Y (2008) A case of 6-pyruvoyl-tetrahydropterin synthase deficiency demonstrates a more significant correlation of l-Dopa dosage with serum prolactin levels than CSF homovanillic acid levels. Brain Dev 30(1): 82–85. doi:10.1016/j.braindev.2007.05.011.PubMedCrossRefGoogle Scholar
  32. Rey F, Blandin-Savoja F, Rey J (1976) Atypical phenylketonuria with normal dihydropteridine reductase activity. N Engl J Med 295(20): 1138–1139.PubMedGoogle Scholar
  33. Schaub J, Daumling S, Curtius HC (1978) Tetrahydrobiopterin therapy of atypical phenylketonuria due to defective dihydrobiopterin biosynthesis. Arch Dis Child 53(8): 674–676.PubMedCrossRefGoogle Scholar
  34. Schircks B, Bieri JH, Viscontini M (1976) Preparation and characterisation of pure 5,6,7,8-tetrahydro-l-neopterine and 5,6,7,8-tetrahydro-d-monapterine (author’s transl). Helv Chim Acta 59(1): 248–252. doi:10.1002/hlca.19760590128.PubMedCrossRefGoogle Scholar
  35. Schmidt TS, Alp NJ (2007) Mechanisms for the role of tetrahydrobiopterin in endothelial function and vascular disease. Clin Sci (Lond) 113(2): 47–63.Google Scholar
  36. Schopf C (1964) Die Anfange der Pterinchemie. In: Pfleiderer W, Taylor, E.D., eds. Pteridine Chemistry. Oxford: Pergamon Press, 3–14.Google Scholar
  37. Smith I, Clayton BE, Wolff OH (1975) New variant of phenylketonuria with progressive neurological illness unresponsive to phenylalanine restriction. Lancet 305(7916): 1108–1111. doi:10.1016/S0140-6736(75)92498-8.CrossRefGoogle Scholar
  38. Smith I, Hyland K, Kendall B (1985) Clinical role of pteridine therapy in tetrahydrobiopterin deficiency. J Inherit Metab Dis 8(Supplement 1): 39–45. doi:10.1007/BF01800658.PubMedCrossRefGoogle Scholar
  39. Spada M, Ferraris S, Ferrero GB (1996) Monitoring treatment in tetrahydrobiopterin deficiency by serum prolactin. J Inherit Metab Dis 19(2): 231–233. doi:10.1007/BF01799437.PubMedCrossRefGoogle Scholar
  40. Thony B, Blau N (2006) Mutations in the BH4-metabolizing genes GTP cyclohydrolase I, 6-pyruvoyl-tetrahydropterin synthase, sepiapterin reductase, carbinolamine-4a-dehydratase, and dihydropteridine reductase. Hum Mutat 27(9): 870–878. doi:10.1002/humu.20366.PubMedCrossRefGoogle Scholar
  41. Thöny B, Neuheiser F, Kierat L, et al (1998) Mutations in the pterin-4alpha-carbinolamine dehydratase (PCBD) gene cause a benign form of hyperphenylalaninemia. Hum Genet 103(2): 162–167. doi:10.1007/s004390050800.PubMedCrossRefGoogle Scholar
  42. Watschinger K, Keller MA, Hermetter A, Golderer G, Werner-Felmayer G, Werner ER (2009) Glyceryl ether monooxygenase resembles aromatic amino acid hydroxylases in metal ion and tetrahydrobiopterin dependence. Biol Chem 390(1): 3–10.Google Scholar
  43. Woody RC, Brewster MA, Glasier C (1989) Progressive intracranial calcification in dihydropteridine reductase deficiency prior to folinic acid therapy. Neurology 39(5): 673–675.PubMedGoogle Scholar
  44. Yang S, Lee YJ, Kim JM, et al (2006) A murine model for human sepiapterin-reductase deficiency. Am J Hum Genet 78(4): 575–587. doi:10.1086/501372.PubMedCrossRefGoogle Scholar
  45. Zorzi G, Redweik U, Trippe H, Penzien JM, Thony B, Blau N (2002) Detection of sepiapterin in CSF of patients with sepiapterin reductase deficiency. Mol Genet Metab 75(2): 174–177. doi:10.1006/mgme.2001.3273.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Division of Medical Genetics, Department of Pediatrics and PathologyUniversity of UtahSalt Lake CityUSA

Personalised recommendations