Dominant versus recessive: Molecular mechanisms in metabolic disease



Inborn errors of metabolism used to be regarded as simple monogenic traits, but a closer look at how different alleles of a gene determine different phenotypes shows that the molecular mechanisms in the individual case are often complicated. Most metabolic disorders represent a spectrum of phenotypes from normal via attenuated to severe (and sometimes prenatally fatal), and disease manifestation is often influenced by other specific genetic or exogenous factors. The terms ‘dominant’ or ‘recessive’ relate to the functional consequences of differing alleles in the (compound) heterozygous individual; the terms are irrelevant for homozygous individuals and inappropriate for X-linked disorders. Mutations affecting the same amino acid residue may be associated with different inheritance patterns. True dominant inheritance in metabolism is rare; it may be found e.g. in tightly regulated biosynthetic pathways or when minor changes in metabolite concentrations have a functional effect. Some disorders such as erythropoietic protoporphyria show pseudodominant inheritance due to prevalent loss-of-function polymorphisms in the general population and are better acknowledged as recessive traits. The term ‘variable expressivity’ is not helpful with regard to autosomal recessive disorders when variable phenotypes are explained by different mutations in the respective gene. Clonal unmasking of a heterozygous mutation through somatic loss of the second allele, the main pathomechanism in inherited tumour predisposition syndromes, is rare in metabolic disorders, but focal congenital hyperinsulinism is a notable exception. Somatic mosaicism for an OTC gene mutation is given as an example of an apparently heterozygous mutation pattern in a boy with an X-linked disease.


  1. Abu-Amero S, Monk D, Frost J, Preece M, Stanier P, Moore GE (2008) The genetic aetiology of Silver–Russell syndrome. J Med Genet 45: 193–199. doi:10.1136/jmg.2007.053017.PubMedGoogle Scholar
  2. Ajioka RS, Phillips JD, Kushner JP (2006) Biosynthesis of heme in mammals. Biochim Biophys Acta 1763: 723–736. doi:10.1016/j.bbamcr.2006.05.005.PubMedGoogle Scholar
  3. Alam NA, Rowan AJ, Wortham NC, et al (2003) Genetic and functional analyses of FH mutations in multiple cutaneous and uterine leiomyomatosis, hereditary leiomyomatosis and renal cancer, and fumarate hydratase deficiency. Hum Mol Genet 12: 1241–1252.PubMedGoogle Scholar
  4. Alfaro JA, Zheng RB, Persson M, et al (2008) ABO(H) blood group A and B glycosyltransferases recognize substrate via specific conformational changes. J Biol Chem 283: 10097–10108. doi:10.1074/jbc.M708669200.PubMedGoogle Scholar
  5. Alonso R, Mata N, Castillo S, et al (2008) Cardiovascular disease in familial hypercholesterolaemia: influence of low-density lipoprotein receptor mutation type and classic risk factors. Atherosclerosis. Epub ahead of print.Google Scholar
  6. Alter BP, Rosenberg PS, Brody LC (2007) Clinical and molecular features associated with biallelic mutations in FANCD1/BRCA2. J Med Genet 44: 1–9. doi:10.1136/jmg.2006.043257.PubMedGoogle Scholar
  7. Anderson KE, Sassa S, Bishop DF, Desnick PJ (1981) Disorders of heme biosynthesis: X-linked sideroblastic anemia and the porphyrias. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The Metabolic and Molecular Bases of Inherited Disease. New York: McGraw-Hill, 2991–3062.Google Scholar
  8. Anderson KE, Bloomer JR, Bonkovsky HL, et al (2005) Recommendations for the diagnosis and treatment of the acute porphyrias. Ann Intern Med 142: 439–450.PubMedGoogle Scholar
  9. Andresen BS, Dobrowolski SF, O’Reilly L, et al (2001) Medium-chain acyl-CoA dehydrogenase (MCAD) mutations identified by MS/MS-based prospective screening of newborns differ from those observed in patients with clinical symptoms: identification and characterization of a new, prevalent mutation that results in mild MCAD deficiency. Am J Hum Genet 68: 1408–1418. doi:10.1086/320602.PubMedGoogle Scholar
  10. Badminton MN, Elder GH (2005) Molecular mechanisms of dominant expression in porphyria. J Inherit Metab Dis 28: 277–286. doi:10.1007/s10545-005-8050-3.PubMedGoogle Scholar
  11. Bateson W (1900) Problems of heredity as a subject for horticultural investigations. J R Hort Soc 25: 54–61.Google Scholar
  12. Bateson W (1902) Mendel’s Principles of Heredity: A Defence. London: Cambridge University Press.Google Scholar
  13. Bateson W (1907) The progress of genetic research. In: Wilks W (ed) Report of the Third 1906 International Conference on Genetics: Hybridization (the cross-breeding of genera or species), the cross-breeding of varieties, and general plant breeding. London: Royal Horticultural Society.Google Scholar
  14. Bateson W (1909) Mendel’s Principles of Heredity. London: Cambridge University Press.Google Scholar
  15. Bateson W, Saunders ER (1902) The facts of heredity in the light of Mendel’s discovery. Reports to the Evolution Committee of the Royal Society 1: 125–160.Google Scholar
  16. Batshaw ML, Msall M, Beaudet AL, Trojak J (1986) Risk of serious illness in heterozygotes for ornithine transcarbamylase deficiency. J Pediatr 108: 236–241. doi:10.1016/S0022-3476(86)80989-1.PubMedGoogle Scholar
  17. Baumgartner MR, Dantas MF, Suormala T, et al (2004) Isolated 3-methylcrotonyl-CoA carboxylase deficiency: evidence for an allele-specific dominant negative effect and responsiveness to biotin therapy. Am J Hum Genet 75: 790–800. doi:10.1086/425181.PubMedGoogle Scholar
  18. Bertolini S, Cassanelli S, Garuti R, et al (1999) Analysis of LDL receptor gene mutations in Italian patients with homozygous familial hypercholesterolemia. Arterioscler Thromb Vasc Biol 19: 408–418.PubMedGoogle Scholar
  19. Bertolini S, Cantafora A, Averna M, et al (2000) Clinical expression of familial hypercholesterolemia in clusters of mutations of the LDL receptor gene that cause a receptor-defective or receptor-negative phenotype. Arterioscler Thromb Vasc Biol 20: E41–E52.PubMedGoogle Scholar
  20. Beukeveld GJ, Wolthers BG, Nordmann Y, Deybach JC, Grandchamp B, Wadman SK (1990) A retrospective study of a patient with homozygous form of acute intermittent porphyria. J Inherit Metab Dis 13: 673–683. doi:10.1007/BF01799566.PubMedGoogle Scholar
  21. Beutler E, Baluda MC, Sturgeon P, Day R (1965) A new genetic abnormality resulting in galactose-1-phosphate uridyltransferase deficiency. Lancet 285(7381): 353–354. doi:10.1016/S0140-6736(65)91782-4.Google Scholar
  22. Bird TD, Hamernyik P, Nutter JY, Labbe RF (1979) Inherited deficiency of delta-aminolevulinic acid dehydratase. Am J Hum Genet 31: 662–668.PubMedGoogle Scholar
  23. Byers PH (2001) Disorders of collagen biosynthesis and structure. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc. eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edn. New York: McGraw-Hill, 5241–5285.Google Scholar
  24. Cai X, Cullen BR (2007) The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA 13: 313–316. doi:10.1261/rna.351707.PubMedGoogle Scholar
  25. Chun K, MacKay N, Petrova-Benedict R, et al (1995) Mutations in the X-linked E1 alpha subunit of pyruvate dehydrogenase: exon skipping, insertion of duplicate sequence, and missense mutations leading to the deficiency of the pyruvate dehydrogenase complex. Am J Hum Genet 56: 558–569.PubMedGoogle Scholar
  26. Classon M, Harlow E (2002) The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer 2: 910–917. doi:10.1038/nrc950.PubMedGoogle Scholar
  27. Cooper WN, Luharia A, Evans GA, et al (2005) Molecular subtypes and phenotypic expression of Beckwith–Wiedemann syndrome. Eur J Hum Genet 13: 1025–1032. doi:10.1038/sj.ejhg.5201463.PubMedGoogle Scholar
  28. Correns C (1900) G. Mendels Regel über das Verhalten der Nachkommenschaft der Rassenbastarde. Berichte der Deutschen Botanischen Gesellschaft 18: 158–168.Google Scholar
  29. Corson TW, Gallie BL (2007) One hit, two hits, three hits, more? Genomic changes in the development of retinoblastoma. Genes Chromosomes Cancer 46: 617–634. doi:10.1002/gcc.20457.PubMedGoogle Scholar
  30. Coughlin EM, Christensen E, Kunz PL, et al (1998) Molecular analysis and prenatal diagnosis of human fumarase deficiency. Mol Genet Metab 63: 254–262.PubMedGoogle Scholar
  31. Dahl HH (1995) Pyruvate dehydrogenase E1 alpha deficiency: males and females differ yet again. Am J Hum Genet 56: 553–557.PubMedGoogle Scholar
  32. de Lonlay P, Fournet JC, Rahier J, et al (1997) Somatic deletion of the imprinted 11p15 region in sporadic persistent hyperinsulinemic hypoglycemia of infancy is specific of focal adenomatous hyperplasia and endorses partial pancreatectomy. J Clin Invest 100: 802–807. doi:10.1172/JCI119594.PubMedGoogle Scholar
  33. de Lonlay-Debeney P, Poggi-Travert F, et al (1999) Clinical features of 52 neonates with hyperinsulinism. N Engl J Med 340: 1169–1175. doi:10.1056/NEJM199904153401505.PubMedGoogle Scholar
  34. De Vries H (1900) Sur la loi de disjonction des hybrides. C R Academ Sci (Paris) 130: 845–847.Google Scholar
  35. Deegan PB, Baehner AF, Barba Romero MA, Hughes DA, Kampmann C, Beck M (2006) Natural history of Fabry disease in females in the Fabry Outcome Survey. J Med Genet 43: 347–352. doi:10.1136/jmg.2005.036327.PubMedGoogle Scholar
  36. Deon M, Sitta A, Barschak AG, et al (2008) Oxidative stress is induced in female carriers of X-linked adrenoleukodystrophy. J Neurol Sci 266: 79–83. doi:10.1016/j.jns.2007.08.043.PubMedGoogle Scholar
  37. Dobyns WB, Filauro A, Tomson BN, et al (2004) Inheritance of most X-linked traits is not dominant or recessive, just X-linked. Am J Med Genet A 129A: 136–143. doi:10.1002/ajmg.a.30123.PubMedGoogle Scholar
  38. Egger NG, Lee C, Anderson KE (2006) Disorders of heme biosynthesis. In: Fernandes J, Saudubray JM, van den Berghe G, Walter JH (eds) Inborn Metabolic Diseases. Heidelberg: Springer 451–464.Google Scholar
  39. Eisensmith RC, Woo SL (1992) Molecular basis of phenylketonuria and related hyperphenylalaninemias: mutations and polymorphisms in the human phenylalanine hydroxylase gene. Hum Mutat 1: 13–23. doi:10.1002/humu.1380010104.PubMedGoogle Scholar
  40. Elsevier JP, Fridovich-Keil JL (1996) The Q188R mutation in human galactose-1-phosphate uridylyltransferase acts as a partial dominant negative. J Biol Chem 271: 32002–32007. doi:10.1074/jbc.271.50.32002.PubMedGoogle Scholar
  41. Engel E (2006) A fascination with chromosome rescue in uniparental disomy: Mendelian recessive outlaws and imprinting copyrights infringements. Eur J Hum Genet 14: 1158–1169. doi:10.1038/sj.ejhg.5201619.PubMedGoogle Scholar
  42. Gabory A, Ripoche MA, Yoshimizu T, Dandolo L (2006) The H19 gene: regulation and function of a non-coding RNA. Cytogenet Genome Res 113: 188–193. doi:10.1159/000090831.PubMedGoogle Scholar
  43. Garrod AE (1899) A contribution to the study of alkaptonuria. Medico-Chirurg Trans 82: 367–394.Google Scholar
  44. Garrod AE (1901) About alkaptonuria. Lancet 158(4083): 1484–1486. doi:10.1016/S0140-6736(01)74537-0.Google Scholar
  45. Garrod AE (1902) The incidence of alkaptonuria: a study in chemical individuality. Lancet 160(4137): 1616–1620. doi:10.1016/S0140-6736(01)41972-6.Google Scholar
  46. Garrod AE (1908) Inborn errors of metabolism. Lancet 172(4427): 1–7, 73–79, 142–148, 214–220. doi:10.1016/S0140-6736(01)78482-6.Google Scholar
  47. Gasser-Wolf E (1965) Ist die protoporphyrinämische Lichtdermatose eine klinische und genetische Einheit? Helv Paediatr Acta 20: 598–617.PubMedGoogle Scholar
  48. Gellera C, Uziel G, Rimoldi M, et al (1990) Fumarase deficiency is an autosomal recessive encephalopathy affecting both the mitochondrial and the cytosolic enzymes. Neurology 40: 495–499.PubMedGoogle Scholar
  49. Giurgea I, Sempoux C, Bellanne-Chantelot C, et al (2006) The Knudson’s two-hit model and timing of somatic mutation may account for the phenotypic diversity of focal congenital hyperinsulinism. J Clin Endocrinol Metab 91: 4118–4123. doi:10.1210/jc.2006-0397.PubMedGoogle Scholar
  50. Glaser B, Kesavan P, Heyman M, et al (1998) Familial hyperinsulinism caused by an activating glucokinase mutation. N Engl J Med 338: 226–230. doi:10.1056/NEJM199801223380404.PubMedGoogle Scholar
  51. Gloyn AL, Pearson ER, Antcliff JF, et al (2004) Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 350: 1838–1849. doi:10.1056/NEJMoa032922.PubMedGoogle Scholar
  52. Gloyn AL, Siddiqui J, Ellard S (2006) Mutations in the genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum Mutat 27: 220–231. doi:10.1002/humu.20292.PubMedGoogle Scholar
  53. Gottlieb E, Tomlinson IP (2005) Mitochondrial tumour suppressors: a genetic and biochemical update. Nat Rev Cancer 5: 857–866.PubMedGoogle Scholar
  54. Gouya L, Puy H, Robreau AM, et al (2002) The penetrance of dominant erythropoietic protoporphyria is modulated by expression of wildtype FECH. Nat Genet 30: 27–28. doi:10.1038/ng809.PubMedGoogle Scholar
  55. Gouya L, Martin-Schmitt C, Robreau AM, et al (2006) Contribution of a common single-nucleotide polymorphism to the genetic predisposition for erythropoietic protoporphyria. Am J Hum Genet 78: 2–14. doi:10.1086/498620.PubMedGoogle Scholar
  56. Gross U, Sassa S, Jacob K, et al (1998) 5-Aminolevulinic acid dehydratase deficiency porphyria: a twenty-year clinical and biochemical follow-up. Clin Chem 44: 1892–1896.PubMedGoogle Scholar
  57. Guldberg P, Henriksen KF, Thony B, Blau N, Guttler F (1994) Molecular heterogeneity of nonphenylketonuria hyperphenylalaninemia in 25 Danish patients. Genomics 21: 453–455. doi:10.1006/geno.1994.1296.PubMedGoogle Scholar
  58. Guldberg P, Rey F, Zschocke J, et al (1998) A European multicenter study of phenylalanine hydroxylase deficiency: classification of 105 mutations and a general system for genotype-based prediction of metabolic phenotype. Am J Hum Genet 63: 71–79. doi:10.1086/301920.PubMedGoogle Scholar
  59. Güttler F (1980) Hyperphenylalaninemia: diagnosis and classification of the various types of phenylalanine hydroxylase deficiency in childhood. Acta Paediatr Scand Suppl 280: 1–80.PubMedGoogle Scholar
  60. Holme SA, Worwood M, Anstey AV, Elder GH, Badminton MN (2007) Erythropoiesis and iron metabolism in dominant erythropoietic protoporphyria. Blood 110: 4108–4110. doi:10.1182/blood-2007-04-088120.PubMedGoogle Scholar
  61. Horvath GA, Stockler-Ipsiroglu SG, Salvarinova-Zivkovic R, et al (2008) Autosomal recessive GTP cyclohydrolase I deficiency without hyperphenylalaninemia: evidence of a phenotypic continuum between dominant and recessive forms. Mol Genet Metab 94: 127–131. doi:10.1016/j.ymgme.2008.01.003.PubMedGoogle Scholar
  62. Howlett NG, Taniguchi T, Olson S, et al (2002) Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297: 606–609. doi:10.1126/science.1073834.PubMedGoogle Scholar
  63. Huopio H, Reimann F, Ashfield R, et al (2000) Dominantly inherited hyperinsulinism caused by a mutation in the sulfonylurea receptor type 1. J Clin Invest 106: 897–906. doi:10.1172/JCI9804.PubMedGoogle Scholar
  64. Hussain K, Flanagan SE, Smith VV, et al (2008) An ABCC8 gene mutation and mosaic uniparental isodisomy resulting in atypical diffuse congenital hyperinsulinism. Diabetes 57: 259–263. doi:10.2337/db07-0998.PubMedGoogle Scholar
  65. Hwu WL, Wang PJ, Hsiao KJ, Wang TR, Chiou YW, Lee YM (1999) Dopa-responsive dystonia induced by a recessive GTP cyclohydrolase I mutation. Hum Genet 105: 226–230. doi:10.1007/s004390051093.PubMedGoogle Scholar
  66. Hwu WL, Chiou YW, Lai SY, Lee YM (2000) Dopa-responsive dystonia is induced by a dominant-negative mechanism. Ann Neurol 48: 609–613. doi:10.1002/1531-8249(200010)48:4<609::AID-ANA7>3.0.CO;2-H.PubMedGoogle Scholar
  67. Ichinose H, Ohye T, Takahashi E, et al (1994) Hereditary progressive dystonia with marked diurnal fluctuation caused by mutations in the GTP cyclohydrolase I gene. Nat Genet 8: 236–242. doi:10.1038/ng1194-236.PubMedGoogle Scholar
  68. Jansen AC, van Wissen S, Defesche JC, Kastelein JJ (2002) Phenotypic variability in familial hypercholesterolaemia: an update. Curr Opin Lipidol 13: 165–171. doi:10.1097/00041433-200204000-00008.PubMedGoogle Scholar
  69. Jansen AC, van Aalst-Cohen ES, Tanck MW, et al (2005) Genetic determinants of cardiovascular disease risk in familial hypercholesterolemia. Arterioscler Thromb Vasc Biol 25: 1475–1481. doi:10.1161/01.ATV.0000168909.44877.a7.PubMedGoogle Scholar
  70. Kacser H, Burns JA (1981) The molecular basis of dominance. Genetics 97: 639–666.PubMedGoogle Scholar
  71. Kacser H, Bulfield G, Wallace ME (1973) Histidinaemic mutant in the mouse. Nature 244: 77–79. doi:10.1038/244077a0.PubMedGoogle Scholar
  72. Klepper J, Leiendecker B (2007) GLUT1 deficiency syndrome—2007 update. Dev Med Child Neurol 49: 707–716.PubMedCrossRefGoogle Scholar
  73. Knox WE, Messinger EC (1958) The detection in the heterozygote of the metabolic effect of the recessive gene for phenylketonuria. Am J Hum Genet 10: 53–60.PubMedGoogle Scholar
  74. Knudson AG Jr. (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 68: 820–823. doi:10.1073/pnas.68.4 820 10.1073/pnas.68.4.820.PubMedGoogle Scholar
  75. Knudson AG (2001) Two genetic hits (more or less) to cancer. Nat Rev Cancer 1: 157–162. doi:10.1038/35101031.PubMedGoogle Scholar
  76. Kozak L, Francova H, Pijackova A, et al (1999) Presence of a deletion in the 5′ upstream region of the GALT gene in Duarte (D2) alleles. J Med Genet 36: 576–578.PubMedGoogle Scholar
  77. Krawczak M, Zschocke J (2003) A role for overdominant selection in phenylketonuria? Evidence from molecular data. Hum Mutat 21: 394–397. doi:10.1002/humu.10205.PubMedGoogle Scholar
  78. Lin YW, MacMullen C, Ganguly A, Stanley CA, Shyng SL (2006) A novel KCNJ11 mutation associated with congenital hyperinsulinism reduces the intrinsic open probability of beta-cell ATP-sensitive potassium channels. J Biol Chem 281: 3006–3012. doi:10.1074/jbc.M511875200.PubMedGoogle Scholar
  79. Lyon MF (1962) Sex chromatin and gene action in the mammalian X-chromosome. Am J Hum Genet 14: 135–148.PubMedGoogle Scholar
  80. Maestri NE, Lord C, Glynn M, Bale A, Brusilow SW (1998) The phenotype of ostensibly healthy women who are carriers for ornithine transcarbamylase deficiency. Medicine (Baltimore) 77: 389–397. doi:10.1097/00005792-199811000-00005.Google Scholar
  81. Magge SN, Shyng SL, MacMullen C, et al (2004) Familial leucine-sensitive hypoglycemia of infancy due to a dominant mutation of the beta-cell sulfonylurea receptor. J Clin Endocrinol Metab 89: 4450–4456. doi:10.1210/jc.2004-0441.PubMedGoogle Scholar
  82. Maier EM, Kammerer S, Muntau AC, Wichers M, Braun A, Roscher AA (2002) Symptoms in carriers of adrenoleukodystrophy relate to skewed X inactivation. Ann Neurol 52: 683–688. doi:10.1002/ana.10376.PubMedGoogle Scholar
  83. Marabotti A, Facchiano AM (2005) Homology modeling studies on human galactose-1-phosphate uridylyltransferase and on its galactosemia-related mutant Q188R provide an explanation of molecular effects of the mutation on homo- and heterodimers. J Med Chem 48: 773–779. doi:10.1021/jm049731q.PubMedGoogle Scholar
  84. Meissner P, Adams P, Kirsch R (1993) Allosteric inhibition of human lymphoblast and purified porphobilinogen deaminase by protoporphyrinogen and coproporphyrinogen. A possible mechanism for the acute attack of variegate porphyria. J Clin Invest 91: 1436–1444. doi:10.1172/JCI116348.PubMedGoogle Scholar
  85. Mendel G (1866) Versuche über Pflanzenhybriden. Verhandlungen des naturforschenden Vereines in Brünn 4: 3–47.Google Scholar
  86. Morgan TH (1910) Sex-limited inheritance in Drosophila. Science 32: 120–122. doi:10.1126/science.32.812.120.PubMedGoogle Scholar
  87. Morgan TH, Sturtevant AH, Muller HJ, Bridges CB (1915) The Mechanism of Mendelian Heredity. New York: Henry Holt & Co.Google Scholar
  88. Nakano H, Nakano A, Toyomaki Y, et al (2006) Novel ferrochelatase mutations in Japanese patients with erythropoietic protoporphyria: high frequency of the splice site modulator IVS3–48C polymorphism in the Japanese population. J Invest Dermatol 126: 2717–2719. doi:10.1038/sj.jid.5700456.PubMedGoogle Scholar
  89. Narain Y, Wyttenbach A, Rankin J, Furlong RA, Rubinsztein DC (1999) A molecular investigation of true dominance in Huntington’s disease. J Med Genet 36: 739–746.PubMedGoogle Scholar
  90. Nardocci N, Zorzi G, Blau N, et al (2003) Neonatal dopa-responsive extrapyramidal syndrome in twins with recessive GTPCH deficiency. Neurology 60: 335–337.PubMedGoogle Scholar
  91. Nichols CG (2006) KATP channels as molecular sensors of cellular metabolism. Nature 440: 470–476. doi:10.1038/nature04711.PubMedGoogle Scholar
  92. Otonkoski T, Jiao H, Kaminen-Ahola N, et al (2007) Physical exercise-induced hypoglycemia caused by failed silencing of monocarboxylate transporter 1 in pancreatic beta cells. Am J Hum Genet 81: 467–474. doi:10.1086/520960.PubMedGoogle Scholar
  93. Parkhurst SM, Meneely PM (1994) Sex determination and dosage compensation: lessons from flies and worms. Science 264: 924–932. doi:10.1126/science.8178152.PubMedGoogle Scholar
  94. Patenaude SI, Seto NO, Borisova SN, et al (2002) The structural basis for specificity in human ABO(H) blood group biosynthesis. Nat Struct Biol 9: 685–690. doi:10.1038/nsb832.PubMedGoogle Scholar
  95. Pier GB, Grout M, Zaidi T, et al (1998) Salmonella typhi uses CFTR to enter intestinal epithelial cells. Nature 393: 79–82. doi:10.1038/30006.PubMedGoogle Scholar
  96. Pinney SE, Macmullen C, Becker S, et al (2008) Clinical characteristics and biochemical mechanisms of congenital hyperinsulinism associated with dominant K(ATP)channel mutations. J Clin Invest.Google Scholar
  97. Puy H, Deybach JC, Lamoril J, et al (1997) Molecular epidemiology and diagnosis of PBG deaminase gene defects in acute intermittent porphyria. Am J Hum Genet 60: 1373–1383. doi:10.1086/515455.PubMedGoogle Scholar
  98. Read A, Donnai D (2007) New Clinical Genetics. Bloxham: Scion.Google Scholar
  99. Reed WB, Wuepper KD, Epstein JH, Redeker A, Simonson RJ, McKusick VA (1970) Erythropoietic protoporphyria. A clinical and genetic study. JAMA 214: 1060–1066. doi:10.1001/jama.214.6.1060.PubMedGoogle Scholar
  100. Rinat C, Zoref-Shani E, Ben-Neriah Z, et al (2006) Molecular, biochemical, and genetic characterization of a female patient with Lesch–Nyhan disease. Mol Genet Metab 87: 249–252. doi:10.1016/j.ymgme.2005.09.025.PubMedGoogle Scholar
  101. Rodriguez S, Gaunt TR, Day IN (2007) Molecular genetics of human growth hormone, insulin-like growth factors and their pathways in common disease. Hum Genet 122: 1–21. doi:10.1007/s00439-007-0378-3.PubMedGoogle Scholar
  102. Sarkany RP, Alexander GJ, Cox TM (1994) Recessive inheritance of erythropoietic protoporphyria with liver failure. Lancet 343: 1394–1396. doi:10.1016/S0140-6736(94)92525-9.PubMedGoogle Scholar
  103. Scriver CR, Waters PJ (1999) Monogenic traits are not simple: lessons from phenylketonuria. Trends Genet 15: 267–272. doi:10.1016/S0168-9525(99)01761-8.PubMedGoogle Scholar
  104. Segawa M, Nomura Y, Nishiyama N (2003) Autosomal dominant guanosine triphosphate cyclohydrolase I deficiency (Segawa disease). Ann Neurol 54(Suppl 6): S32–S45. doi:10.1002/ana.10630.PubMedGoogle Scholar
  105. Siemens HW (1925) Über einen in der menschlichen Pathologie noch nicht beobachteten Vererbungsmodus: Dominant-geschlechtsgebundene Vererbung. Arch Rass Gesell Biol 17: 47–61.Google Scholar
  106. Simonaro CM, Park JH, Eliyahu E, Shtraizent N, McGovern MM, Schuchman EH (2006) Imprinting at the SMPD1 locus: implications for acid sphingomyelinase-deficient Niemann–Pick disease. Am J Hum Genet 78: 865–870. doi:10.1086/503750.PubMedGoogle Scholar
  107. Solis C, Martinez-Bermejo A, Naidich TP, et al (2004) Acute intermittent porphyria: studies of the severe homozygous dominant disease provides insights into the neurologic attacks in acute porphyrias. Arch Neurol 61: 1764–1770. doi:10.1001/archneur.61.11.1764.PubMedGoogle Scholar
  108. Stanley CA, Lieu YK, Hsu BY, et al (1998) Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med 338: 1352–1357. doi:10.1056/NEJM199805073381904.PubMedGoogle Scholar
  109. Stokvis BJ (1889) Over twee zeldzame kleurstoffen in urine van zieken. Nederl Tijdschr Geneeskd 2: 409–417.Google Scholar
  110. Strand LJ, Meyer UA, Felsher BF, Redeker AG, Marver HS (1972) Decreased red cell uroporphyrinogen I synthetase activity in intermittent acute porphyria. J Clin Invest 51: 2530–2536. doi:10.1172/JCI107068.PubMedGoogle Scholar
  111. Sutton WS (1903) The chromosomes in heredity. Biol Bull 4: 231–251. doi:10.2307/1535741.Google Scholar
  112. Thony B, Blau N (2006) Mutations in the BH4-metabolizing genes GTP cyclohydrolase I, 6-pyruvoyl-tetrahydropterin synthase, sepiapterin reductase, carbinolamine-4a-dehydratase, and dihydropteridine reductase. Hum Mutat 27: 870–878. doi:10.1002/humu.20366.PubMedGoogle Scholar
  113. Thornton PS, MacMullen C, Ganguly AR, et al (2003) Clinical and molecular characterization of a dominant form of congenital hyperinsulinism caused by a mutation in the high-affinity sulfonylurea receptor. Diabetes 52: 2403–2410. doi:10.2337/diabetes.52.9.2403.PubMedGoogle Scholar
  114. Tomlinson IP, Alam NA, Rowan AJ, et al (2002) Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 30: 406–410.PubMedGoogle Scholar
  115. Trbušek M, Francová H, Kozák L (2001) Galactosemia: deletion in the 5′ upstream region of the GALT gene reduces promoter efficiency. Hum Genet 109: 117–120. doi:10.1007/s004390100540.PubMedGoogle Scholar
  116. Tyfield L, Reichardt J, Fridovich-Keil J, et al (1999) Classical galactosemia and mutations at the galactose-1-phosphate uridyl transferase (GALT) gene. Hum Mutat 13: 417–430. doi:10.1002/(SICI)1098-1004(1999)13:6<417:AID-HUMU1>3.0.CO;2-0.PubMedGoogle Scholar
  117. Valayannopoulos V, Vaxillaire M, Aigrain Y, et al (2007) Coexistence in the same family of both focal and diffuse forms of hyperinsulinism. Diabetes Care 30: 1590–1592. doi:10.2337/dc06-2327.PubMedGoogle Scholar
  118. Verkarre V, Fournet JC, de Lonlay P, et al (1998) Paternal mutation of the sulfonylurea receptor (SUR1) gene and maternal loss of 11p15 imprinted genes lead to persistent hyperinsulinism in focal adenomatous hyperplasia. J Clin Invest 102: 1286–1291. doi:10.1172/JCI4495.PubMedGoogle Scholar
  119. Vockley J (2008) Metabolism as a complex genetic trait, a systems biology approach: implications for inborn errors of metabolism and clinical diseases. J Inherit Metab Dis 31.Google Scholar
  120. von Tschermak-Seysenegg E (1900) Über künstliche Kreuzung bei Pisum sativum. Zeitschrift für das landwirtschaftliche Versuchswesen in Österreich 3: 465–555.Google Scholar
  121. Went LN, Klasen EC (1984) Genetic aspects of erythropoietic protoporphyria. Ann Hum Genet 48: 105–117. doi:10.1111/j.1469-1809.1984.tb01006.x.PubMedGoogle Scholar
  122. Wilcox WR, Oliveira JP, Hopkin RJ, et al (2008) Females with Fabry disease frequently have major organ involvement: lessons from the Fabry Registry. Mol Genet Metab 93: 112–128. doi:10.1016/j.ymgme.2007.09.013.PubMedGoogle Scholar
  123. Wilson EB (1911) The sex chromosomes. Mikrosk Anat Entwicklungsmech 77: 249–271.Google Scholar
  124. Wiuf C (2001) Do delta F508 heterozygotes have a selective advantage? Genet Res 78: 41–47. doi:10.1017/S0016672301005195.PubMedGoogle Scholar
  125. Yamamoto F, Clausen H, White T, Marken J, Hakomori S (1990a) Molecular genetic basis of the histo-blood group ABO system. Nature 345: 229–233. doi:10.1038/345229a0.Google Scholar
  126. Yamamoto F, Marken J, Tsuji T, White T, Clausen H, Hakomori S (1990b) Cloning and characterization of DNA complementary to human UDP-GalNAc: Fuc alpha 1→2Gal alpha 1→3GalNAc transferase (histo-blood group A transferase) mRNA. J Biol Chem 265: 1146–1151.Google Scholar
  127. Zschocke J, Graham CA, Stewart FJ, Carson DJ, Nevin NC (1994) Non-phenylketonuria hyperphenylalaninaemia in Northern Ireland: frequent mutation allows screening and early diagnosis. Hum Mutat 4: 114–118. doi:10.1002/humu.1380040204.PubMedGoogle Scholar
  128. Zschocke J, Kohlmueller D, Quak E, Meissner T, Hoffmann GF, Mayatepek E (1999) Mild trimethylaminuria caused by common variants in FMO3 gene. Lancet 354: 834–835.PubMedGoogle Scholar
  129. Zschocke J, Schulze A, Lindner M, et al (2001) Molecular and functional characterisation of mild MCAD deficiency. Hum Genet 108: 404–408. doi:10.1007/s004390100501.PubMedGoogle Scholar
  130. Zschocke J, Schaefer JR (2003) Homozygous familial hypercholesterolaemia in identical twins. Lancet 361: 1641. doi:10.1016/S0140-6736(03)13303-X.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Institute of Human GeneticsHeidelberg UniversityHeidelbergGermany
  2. 2.Divisions of Human Genetics and Clinical GeneticsMedical University InnsbruckInnsbruckAustria

Personalised recommendations