Journal of Inherited Metabolic Disease

, Volume 31, Issue 5, pp 619–629 | Cite as

Metabolism as a complex genetic trait, a systems biology approach: Implications for inborn errors of metabolism and clinical diseases

  • Jerry Vockley


Multifactorial and polygenic inheritance is commonly recognized for many genetic conditions including physical anomalies, complex congenital malformation syndromes, and even common disorders such as adult-onset diabetes mellitus. It has only recently been suggested as a mechanism for inheritance in inborn errors of metabolism. This article reviews the phenomenon of multiple partial enzyme deficiencies leading to clinical relevant biochemical derangements (synergistic heterozygosity) and its implications for other more common disorders such as diabetes and obesity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ainscow EK, Brand MD (1999a) The responses of rat hepatocytes to glucagon and adrenaline. Application of quantified elasticity analysis. Eur J Biochem 265: 1043–1055. doi:10.1046/j.1432-1327.1999.00820.x.CrossRefGoogle Scholar
  2. Ainscow EK, Brand MD (1999b) Top-down control analysis of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes. Eur J Biochem 263: 671–685. doi:10.1046/j.1432-1327.1999.00534.x.CrossRefGoogle Scholar
  3. Bennett MJ, Weinberger MJ, Sherwood WG, Burlina AB (1994) Secondary 3-hydroxydicarboxylic aciduria mimicking long chain 3-hydroxyacyl-CoA dehydrogenase deficiency. J Inherit Metab Dis 17: 283–286. doi:10.1007/BF00711808.PubMedCrossRefGoogle Scholar
  4. Bennett MJ, Rinaldo P, Strauss AW (2000) Inborn errors of mitochondrial fatty acid oxidation. Crit Rev Clin Lab Sci 37: 1–44. doi:10.1080/10408360091174169.PubMedCrossRefGoogle Scholar
  5. Brand MD, D’Alessandri L, Reis HM, Hafner RP (1990). Stimulation of the electron transport chain in mitochondria isolated from rats treated with mannoheptulose or glucagon. Arch Biochem Biophys 283: 278–284. doi:10.1016/0003-9861(90)90643-D.PubMedCrossRefGoogle Scholar
  6. Brown GC, Hafner RP, Brand MD (1990) A ‘top-down’ approach to the determination of control coefficients in metabolic control theory. Eur J Biochem 188: 321–325. doi:10.1111/j.1432-1033.1990.tb15406.x.PubMedCrossRefGoogle Scholar
  7. Cox KB, Hamm DA, Millington DS, et al (2001) Gestational, pathologic and biochemical differences between very long-chain acyl-CoA dehydrogenase deficiency and long-chain acyl-CoA dehydrogenase deficiency in the mouse. Hum Mol Genet 10: 2069–2077. doi:10.1093/hmg/10.19.2069.PubMedCrossRefGoogle Scholar
  8. Csete ME, Doyle JC (2002) Reverse engineering of biological complexity. Science 295: 1664–1669. doi:10.1126/science.1069981.PubMedCrossRefGoogle Scholar
  9. Davidson EH, Rast JP, Oliveri P, et al (2002) A genomic regulatory network for development. Science 295: 1669–1678. doi:10.1126/science.1069883.PubMedCrossRefGoogle Scholar
  10. Eaton S, Fukumoto K, Paladio Duran N, et al (2001) Carnitine palmitoyl transferase I and the control of myocardial beta-oxidation flux. Biochem Soc Trans 29: 245–250. doi:10.1042/BST0290245.PubMedCrossRefGoogle Scholar
  11. Enns GM, Bennett MJ, Hoppel CL, et al (2000) Mitochondrial respiratory chain complex I deficiency with clinical and biochemical features of long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency. J Pediatr 136: 251–254. doi:10.1016/S0022-3476(00)70111-9.PubMedCrossRefGoogle Scholar
  12. Exil VJ, Roberts RL, Sims H, et al (2003) Very-long-chain acyl-coenzyme a dehydrogenase deficiency in mice. Circ Res 93: 448–455. doi:10.1161/01.RES.0000088786.19197.E4.PubMedCrossRefGoogle Scholar
  13. Fell DA (1992) Metabolic control analysis: a survey of its theoretical and experimental development. Biochem J 286: 313–330.PubMedGoogle Scholar
  14. Frerman FE (1987) Reaction of electron-transfer flavoprotein ubiquinone oxidoreductase with the mitochondrial respiratory chain. Biochim Biophys Acta 893: 161–169. doi:10.1016/0005-2728(87)90035-1.PubMedCrossRefGoogle Scholar
  15. Ghisla S (2004) Beta-oxidation of fatty acids. A century of discovery. Eur J Biochem 271: 459–461. doi:10.1046/j.1432-1033.2003.03952.x.PubMedCrossRefGoogle Scholar
  16. Goetzman ES, Tian L, Wood PA (2005) Differential induction of genes in liver and brown adipose tissue regulated by peroxisome proliferator-activated receptor-alpha during fasting and cold exposure in acyl-CoA dehydrogenase-deficient mice. Mol Genet Metab 84: 39–47. doi:10.1016/j.ymgme.2004.09.010.PubMedCrossRefGoogle Scholar
  17. Guerra C, Koza RA, Walsh K, Kurtz DM, Wood PA, Kozak LP (1998) Abnormal nonshivering thermogenesis in mice with inherited defects of fatty acid oxidation. J Clin Invest 102: 1724–1731. doi:10.1172/JCI4532.PubMedCrossRefGoogle Scholar
  18. Hafner RP, Brown GC, Brand MD (1990) Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the ‘top-down’ approach of metabolic control theory. Eur J Biochem 188: 313–319. doi:10.1111/j.1432-1033.1990.tb15405.x.PubMedCrossRefGoogle Scholar
  19. Heinemeyer J, Braun HP, Boekema EJ, Kouril R (2007) A structural model of the cytochrome C reductase/oxidase supercomplex from yeast mitochondria. J Biol Chem 282: 12240–12248. doi:10.1074/jbc.M610545200.PubMedCrossRefGoogle Scholar
  20. Heinrich R, Rapoport TA (1974) A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem 42: 89–95. doi:10.1111/j.1432-1033.1974.tb03318.x.PubMedCrossRefGoogle Scholar
  21. Hinsdale ME, Kelly CL, Wood PA (1993) Null allele at bcd-1 locus in BALB/cByJ mice is due to a deletion in the short-chain acyl-CoA dehydrogenase gene and results in missplicing of messenger RNA. Genomics 16: 605–611. doi:10.1006/geno.1993.1237.PubMedCrossRefGoogle Scholar
  22. Holme E, Lindstedt S (1995) Diagnosis and management of tyrosinemia type I. Curr Opin Pediatr 7: 726–732.PubMedGoogle Scholar
  23. Kacser H, Burns JA (1973) The control of flux. Symp Soc Exp Biol 27: 65–104.PubMedGoogle Scholar
  24. Kacser H, Burns JA (1995) The control of flux. Biochem Soc Trans 23: 341–366.PubMedGoogle Scholar
  25. Kelley DE, Goodpaster B, Wing RR, Simoneau JA (1999) Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Physiol 277: E1130–1141.PubMedGoogle Scholar
  26. Kelly CL, Rhead WJ, Kutschke DA, et al (1995) Functional correction of short-chain acyl-CoA dehydrogenase deficiency in transgenic mice. Am J Hum Genet 57(Supplement): A52.Google Scholar
  27. Kelly CL, Rhead WJ, Kutschke WK, et al (1997) Functional correction of short-chain acyl-CoA dehydrogenase deficiency in transgenic mice—implications for gene therapy of human mitochondrial enzyme deficiencies. Hum Mol Genet 6: 1451–1455. doi:10.1093/hmg/6.9.1451.PubMedCrossRefGoogle Scholar
  28. Kispal G, Sumegi B, Alkonyi I (1986) Isolation and characterization of 3-hydroxyacyl coenzyme A dehydrogenase-binding protein from pig heart inner mitochondrial membrane. J Biol Chem 261: 14209–14213.PubMedGoogle Scholar
  29. Kitano H (2002) Systems biology: a brief overview. Science 295: 1662–1664. doi:10.1126/science.1069492.PubMedCrossRefGoogle Scholar
  30. Korf B, Rimoin D, O’Connor J, Pyeritz R (2008) Nature and frequency of genetic disease. In: Rimoin D, O’Connor J, Pyeritz R, Korf B, eds. Principles and Practice of Medical Genetics. Amsterdam: Elsevier, 49–51.Google Scholar
  31. Krauss S, Quant PA (1996) Regulation and control in complex, dynamic metabolic systems: experimental application of the top-down approaches of metabolic control analysis to fatty acid oxidation and detogenesis. J Theor Biol. 182: 381–388. doi:10.1006/jtbi.1996.0177.PubMedCrossRefGoogle Scholar
  32. Kurtz DM, Rinaldo P, Rhead WJ, et al (1998) Targeted disruption of mouse long-chain acyl-CoA dehydrogenase gene reveals crucial roles for fatty acid oxidation. Proc Natl Acad Sci U S A. 95: 15592–15597. doi:10.1073/pnas.95.26.15592.PubMedCrossRefGoogle Scholar
  33. Link TA, Schagger H, von Jagow G (1986) Analysis of the structures of the subunits of the cytochrome bc1 complex from beef heart mitochondria. FEBS Lett 204: 9–15. doi:10.1016/0014-5793(86)81378-3.PubMedCrossRefGoogle Scholar
  34. McGarry JD (2001) Travels with carnitine palmitoyltransferase I: from liver to germ cell with stops in between. Biochem Soc Trans 29: 241–245. doi:10.1042/BST0290241.PubMedCrossRefGoogle Scholar
  35. McGarry JD, Foster DW (1980) Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem 49: 395–420. doi:10.1146/ Scholar
  36. Mootha VK, Bunkenborg J, Olsen JV, et al (2003). Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115: 629–640. doi:10.1016/S0092-8674(03)00926-7.PubMedCrossRefGoogle Scholar
  37. Parker A, Engel P (2000) Preliminary evidence for the existence of specific functional assemblies between enzymes of the beta-oxidation pathway and the respiratory chain. Biochem J 345: 429–435. doi:10.1042/0264-6021:3450429.PubMedCrossRefGoogle Scholar
  38. Quant PA (1993) Experimental application of top-down control analysis to metabolic systems. Trends Biochem Sci 18: 26–30. doi:10.1016/0968-0004(93)90084-Z.PubMedCrossRefGoogle Scholar
  39. Rubio JC, Martin MA, Bautista J, et al (1998) Myophosphorylase deficiency associated with a defect in complex I of the mitochondrial respiratory chain. J Neurol Sci 161: 110–113. doi:10.1016/S0022-510X(98)00263-9.PubMedCrossRefGoogle Scholar
  40. Rubio JC, Martin MA, del Hoyo P, et al (2000) Molecular analysis of Spanish patients with AMP deaminase deficiency. Muscle Nerve 23: 1175–1178. doi:10.1002/1097-4598(200008)23:8<1175::AID-MUS3>3.0.CO;2-M.PubMedCrossRefGoogle Scholar
  41. Ruzicka FJ, Beinert H (1975) A new membrane iron-sulfur flavoprotein of the mitochondrial electron transfer system. The entrance point of the fatty acyl dehydrogenation pathway? Biochem Biophys Res Commun 66: 622–631. doi:10.1016/0006-291X(75)90555-0.PubMedCrossRefGoogle Scholar
  42. Schagger H (2002) Respiratory chain supercomplexes of mitochondria and bacteria. Biochim Biophys Acta 1555: 154–159. doi:10.1016/S0005-2728(02)00271-2.PubMedCrossRefGoogle Scholar
  43. Schuler AM, Gower BA, Matern D, Rinaldo P, Vockley J, Wood PA (2005) Synergistic heterozygosity in mice with inherited enzyme deficiencies of mitochondrial fatty acid beta-oxidation. Mol Genet Metab 85: 7–11. doi:10.1016/j.ymgme.2004.09.006.PubMedCrossRefGoogle Scholar
  44. Scriver CR, Waters PJ (1999) Monogenic traits are not simple: lessons from phenylketonuria. Trends Genet 15: 267–272. doi:10.1016/S0168-9525(99)01761-8.PubMedCrossRefGoogle Scholar
  45. Segre D, Deluna A, Church GM, Kishony R (2005) Modular epistasis in yeast metabolism. Nat Genet 37: 77–83.PubMedGoogle Scholar
  46. Shoffner JM (2001) Oxidative phosphorylation diseases. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc. eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edn. New York: McGraw-Hill, 2367–2424.Google Scholar
  47. Smeitink J, van den Heuvel L, DiMauro S (2001) The genetics and pathology of oxidative phosphorylation. Nature Rev Genet 2: 342–352. doi:10.1038/35072063.CrossRefGoogle Scholar
  48. Stroh A, Anderka O, Pfeiffer K, et al (2004) Assembly of respiratory complexes I, III, and IV into NADH oxidase supercomplex stabilizes complex I in Paracoccus denitrificans. J Biol Chem 279: 5000–5007. doi:10.1074/jbc.M309505200.PubMedCrossRefGoogle Scholar
  49. Su AI, Cooke MP, Ching KA, et al (2002). Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci U S A 99: 4465–4470. doi:10.1073/pnas.012025199.PubMedCrossRefGoogle Scholar
  50. Sumegi B, Srere PA (1984) Complex I binds several mitochondrial NAD-coupled dehydrogenases. J Biol Chem 259: 15040–15045.PubMedGoogle Scholar
  51. Sumegi B, Porpaczy Z, Alkonyi I (1991) Kinetic advantage of the interaction between the fatty acid beta-oxidation enzymes and the complexes of the respiratory chain. Biochim Biophys Acta 1081: 121–812.PubMedGoogle Scholar
  52. Thorpe C, Kim JJ (1995) Structure and mechanism of action of the acyl-CoA dehydrogenases. FASEB J 9: 718–725.PubMedGoogle Scholar
  53. Tong AH, Lesage G, Bader GD, et al (2004) Global mapping of the yeast genetic interaction network. Science 303: 808–813. doi:10.1126/science.1091317.PubMedCrossRefGoogle Scholar
  54. Tonin P, Lewis P, Servidei S, DiMauro S (1990) Metabolic causes of myoglobinuria. Ann Neurol 27: 181–185. doi:10.1002/ana.410270214.PubMedCrossRefGoogle Scholar
  55. Venizelos N, von Dobeln U, Hagenfeldt L (1998) Fatty acid oxidation in fibroblasts from patients with defects in beta-oxidation and in the respiratory chain. J Inherit Metab Dis 21: 409–415. doi:10.1023/A:1005310809714.PubMedCrossRefGoogle Scholar
  56. Vladutiu G (2000) Complex phenotypes in metabolic muscle diseases. Muscle Nerve 23: 1157–1159. doi:10.1002/1097-4598(200008)23:8<1157::AID-MUS1>3.0.CO;2-O.PubMedCrossRefGoogle Scholar
  57. Vladutiu GD (2001) Heterozygosity: an expanding role in proteomics [Review]. Mol Genet Metab 74: 51–63. doi:10.1006/mgme.2001.3240.PubMedCrossRefGoogle Scholar
  58. Vockley J, Whiteman DA (2002) Defects of mitochondrial beta-oxidation: a growing group of disorders. Neuromuscul Disord 12: 235–246. doi:10.1016/S0960-8966(01)00308-X.PubMedCrossRefGoogle Scholar
  59. Vockley J, Rinaldo P, Bennett MJ, Matern D, Vladutiu GD (2000) Synergistic heterozygosity: disease resulting from multiple partial defects in one or more metabolic pathways. Mol GenetMetab 71: 10–18. doi:10.1006/mgme.2000.3066.Google Scholar
  60. Vockley J, Singh RH, Whiteman DA (2002) Diagnosis and management of defects of mitochondrial beta-oxidation. Curr Opin Clin Nutr Metab Care 5: 601–609. doi:10.1097/00075197-200211000-00002.PubMedCrossRefGoogle Scholar
  61. Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10: 789–799. doi:10.1038/nm1087.PubMedCrossRefGoogle Scholar
  62. Wallace DC (1992) Diseases of the mitochondrial DNA. Annu Rev Biochem 61: 1175–1212. doi:10.1146/ Scholar
  63. Wallace DC (1993) Mitochondrial diseases—genotype versus phenotype. Trends Gene. 9: 128–133. doi:10.1016/0168-9525(93)90207-X.CrossRefGoogle Scholar
  64. Wood PA, Amendt BA, Rhead WJ, Millington DS, Inoue F, Armstrong D (1989) Short chain acyl-CoA dehydrogenase deficiency in mice. Pediatr Res 25: 38–43. doi:10.1203/00006450-198901000-00010.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of PediatricsThe Children’s Hospital of Pittsburgh, University of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations