Brain dysfunction in phenylketonuria: Is phenylalanine toxicity the only possible cause?

  • F. J. van Spronsen
  • Marieke Hoeksma
  • Dirk-Jan Reijngoud
BH4 and PKU

Summary

In phenylketonuria, mental retardation is prevented by a diet that severely restricts natural protein and is supplemented with a phenylalanine-free amino acid mixture. The result is an almost normal outcome, although some neuropsychological disturbances remain. The pathology underlying cognitive dysfunction in phenylketonuria is unknown, although it is clear that the high plasma concentrations of phenylalanine influence the blood–brain barrier transport of large neutral amino acids. The high plasma phenylalanine concentrations increase phenylalanine entry into brain and restrict the entry of other large neutral amino acids. In the literature, emphasis has been on high brain phenylalanine as the pathological substrate that causes mental retardation. Phenylalanine was found to interfere with different cerebral enzyme systems. However, apart from the neurotoxicity of phenylalanine, a deficiency of the other large neutral amino acids in brain may also be an important factor affecting cognitive function in phenylketonuria. Cerebral protein synthesis was found to be disturbed in a mouse model of phenylketonuria and could be caused by shortage of large neutral amino acids instead of high levels of phenylalanine. Therefore, in this review we emphasize the possibility of a different idea about the pathogenesis of mental dysfunction in phenylketonuria patients and the aim of treatment strategies. The aim of treatment in phenylketonuria might be to normalize cerebral concentrations of all large neutral amino acids rather than prevent high cerebral phenylalanine concentrations alone. In-depth studies are necessary to investigate the role of large neutral amino acid deficiencies in brain.

Abbreviations

BBB

blood–brain barrier

LNAA

large neutral amino acids

MRS

magnetic resonance spectroscopy

PAH

phenylalanine hydroxylase

PKU

phenylketonuria

References

  1. Anderson PJ, Wood SJ, Francis DE, Coleman L, Anderson V, Boneh A (2007) Are neuropsychological impairments in children with earl-treated phenylketonuria (PKU) related to white matter abnormalities or elevated phenylalanine levels? Dev Neuropsychol 32: 645–668.PubMedCrossRefGoogle Scholar
  2. Antoshechkin AG, Chentsova TV, Tatur VY, Naritsin DB, Railian GP (1991) Content of phenylalanine, tyrosine and their metabolites in CSF in phenylketonuria. J Inherit Metab Dis 14: 749–754. doi:10.1007/BF01799945.PubMedCrossRefGoogle Scholar
  3. Bauman ML, Kemper TL (1982) Morphologic and histoanatomic observations of the brain in untreated human phenylketonuria. Acta Neuropathol 58: 55–63. doi:10.1007/BF00692698.PubMedCrossRefGoogle Scholar
  4. Bonafé L, Blau N, Burlina AP, et al (2001) Treatable neurotransmitter deficiency in mild phenylketonuria. Neurology 57: 908–911.PubMedGoogle Scholar
  5. Burlina AB, Bonafé L, Ferrari V, et al (2000) Measurement of neurotransmitter metabolites in the cerebrospinal fluid of phenylketonuric patients under dietary treatment. J Inherit Metab Dis 2000; 23: 313–316. doi:10.1023/A:1005694122277.PubMedCrossRefGoogle Scholar
  6. Butler IJ, O’Flynn ME, Seifert WE, Jr, Howell RR (1981) Neurotransmitter defects and treatment of disorders of hyperphenylalaninemia. J Pediatr 98: 729–733.PubMedCrossRefGoogle Scholar
  7. Cabib S, Pascucci T, Ventura R, Romano V, Puglisi-Allegra S (2003) The behavioral profile of severe mental retardation in a genetic mouse model of phenylketonuria. Behav Genet 33: 301–310. doi:10.1023/A:1023498508987.PubMedCrossRefGoogle Scholar
  8. Channon S, German E, Cassina C, Lee P (2004) Executive functioning, memory, and learning in phenylketonuria. Neuropsychology 18: 613–620. doi:10.1037/0894-4105.18.4.613.PubMedCrossRefGoogle Scholar
  9. Channon S, Mockler C, Lee P (2005) Executive functioning and speed of processing in phenylketonuria. Neuropsychology 19: 679–686. doi:10.1037/0894-4105.19.5.679.PubMedCrossRefGoogle Scholar
  10. Channon S, Goodman G, Zlotowitz S, Mockler C, Lee PJ (2007) Effects of dietary management of phenylketonuria on long-term cognitive outcome. Arch Dis Child 92: 213–218. doi:10.1136/adc.2006.104786.PubMedCrossRefGoogle Scholar
  11. Diamond A, Ciaramitaro V, Donner E, Djali S, Robinson MB (1994) An animal model of early-treated PKU. J Neurosci 14: 3072–3082.PubMedGoogle Scholar
  12. Dyer CA, Kendler A, Philibotte T, et al (1996) Evidence for central nervous system glial cell plasticity in phenylketonuria. J Neuropathol Exp Neurol 55: 795–814. doi:10.1097/00005072-199607000-00005.PubMedCrossRefGoogle Scholar
  13. Fernstrom JD, Fernstrom MH (2007) Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J Nutr 137 (Supplement 1): 1539S–1547S.PubMedCrossRefGoogle Scholar
  14. Glushakov AV, Glushakova O, Varshney M et al (2005) Long-term changes in glutamatergic synaptic transmission in phenylketonuria. Brain 128(2): 300–307. doi:10.1093/brain/awh354.PubMedCrossRefGoogle Scholar
  15. Guttler F, Lou H (1986) Dietary problems of phenylketonuria: effect on CNS transmitters and their possible role in behaviour and neuropsychological function. J Inherit Metab Dis 9 (Supplement 2): 169–177. doi:10.1007/BF01799701.PubMedCrossRefGoogle Scholar
  16. Horster F, Schwab MA, Sauer SW, et al (2006) Phenylalanine reduces synaptic density in mixed cortical cultures from mice. Pediatr Res 59: 544–548. doi:10.1203/01.pdr.0000203091.45988.8d.PubMedCrossRefGoogle Scholar
  17. Hughes JV, Johnson TC (1976) The effects of phenylalanine on amino acid metabolism and protein synthesis in brain cells in vitro. J Neurochem 26: 1105–1113. doi:10.1111/j.1471-4159.1976.tb06993.x.PubMedCrossRefGoogle Scholar
  18. Huijbregts SCJ, de Sonneville LMJ, van Spronsen FJ, Licht R, Sergeant JA (2002) The neuropsychological profile of early and continuously treated phenylketonuria: orienting, vigilance, and maintenance versus manipulation-functions of working memory. Neurosci Biobehav Rev 26: 697–712. doi:10.1016/S0149-7634(02)00040-4.PubMedCrossRefGoogle Scholar
  19. Huijbregts SCJ, de Sonneville LMJ, van Spronsen FJ, et al (2003) Motor function under lower and higher controlled processing demands in early and continuously treated phenylketonuria. Neuropsychology 17: 369–379. doi:10.1037/0894-4105.17.3.369.PubMedCrossRefGoogle Scholar
  20. Ikeda M, Levitt M, Udenfriend S (1965) Hydroxylation of phenylalanine by purified preparations of adrenal and brain tyrosine hydroxylase. Biochem Biophys Res Commun 18: 482–488. doi:10.1016/0006-291X(65)90778-3.PubMedCrossRefGoogle Scholar
  21. Iversen L (2006) Neurotransmitter transporters and their impact on the development of psychopharmacology. Br J Pharmacol 147 (Supplement 1): S82–S88. doi:10.1038/sj.bjp.0706428.PubMedCrossRefGoogle Scholar
  22. Johnston MV (2003) Brain plasticity in paediatric neurology. Eur J Paediatr Neurol 7: 105–113. doi:10.1016/S1090-3798(03)00039-4.PubMedCrossRefGoogle Scholar
  23. Joseph B, Dyer CA (2003) Relationship between myelin production and dopamine synthesis in the PKU mouse brain. J Neurochem 86: 615–626. doi:10.1046/j.1471-4159.2003.01887.x.PubMedCrossRefGoogle Scholar
  24. Leuzzi V, Pansini M, Sechi E, et al (2004) Executive function impairment in early-treated PKU subjects with normal mental development. J Inherit Metab Dis 27: 115–125. doi:10.1023/B:BOLI.0000028781.94251.1f.PubMedCrossRefGoogle Scholar
  25. Lykkelund C, Nielsen JB, Lou HC, et al (1988) Increased neurotransmitter biosynthesis in phenylketonuria induced by phenylalanine restriction or by supplementation of unrestricted diet with large amounts of tyrosine. Eur J Pediatr 148: 238–245. doi:10.1007/BF00441411.PubMedCrossRefGoogle Scholar
  26. Martynyuk AE, Glushakov AV, Sumners C, et al (2005) Impaired glutamatergic synaptic transmission in the PKU brain. Mol Gen Metab 86(Supplement 1): S34–S42. doi:10.1016/j.ymgme.2005.06.014.CrossRefGoogle Scholar
  27. McKean CM (1972) The effects of high phenylalanine concentrations on serotonin and catecholamine metabolism in the human brain. Brain Res 47: 469–476. doi:10.1016/0006-8993(72)90653-1.PubMedCrossRefGoogle Scholar
  28. Möller HE, Weglage J, Wiedermann D, Ullrich K (1998) Blood–brain barrier phenylalanine transport and individual vulnerability in phenylketonuria. J Cereb Blood Flow Metab 18: 1184–1191. doi:10.1097/00004647-199811000-00004.PubMedCrossRefGoogle Scholar
  29. Nishihira T, Takagi T, Mori S (1993) Amino acid imbalance and intracellular protein synthesis. Nutrition 9: 37–42.PubMedGoogle Scholar
  30. Ogawa S, Ichinose H (2006) Effect of metals and phenylalanine on the activity of human tryptophan hydroxylase-2: comparison with that on tyrosine hydroxylase activity. Neurosci Lett 401: 261–265. doi:10.1016/j.neulet.2006.03.031.PubMedCrossRefGoogle Scholar
  31. Pardridge WM (1998) Blood–brain barrier carrier-mediated transport and brain metabolism of amino acids. Neurochem Res 23: 635–644. doi:10.1023/A:1022482604276.PubMedCrossRefGoogle Scholar
  32. Pascucci T, Ventura R, Puglisi-Allegra S, Cabib S (2002) Deficits in brain serotonin synthesis in a genetic mouse model of phenylketonuria. Neuroreport 13: 2561–2564. doi:10.1097/00001756-200212200-00036.PubMedCrossRefGoogle Scholar
  33. Pietz J, Fatkenheuer B, Burgard P, et al (1997) Psychiatric disorders in adult patients with early-treated phenylketonuria. Pediatrics 99: 345–350. doi:10.1542/peds.99.3.345.PubMedCrossRefGoogle Scholar
  34. Pietz J, Kreis R, Rupp A, et al (1999) Large neutral amino acids block phenylalanine transport into brain tissue in patients with phenylketonuria. J Clin Invest 103: 1169–1178. doi:10.1172/JCI5017.PubMedCrossRefGoogle Scholar
  35. Pietz J, Rupp A, Ebinger F, et al (2003) Cerebral energy metabolism in phenylketonuria: findings by quantitative in vivo 31P MR spectroscopy. Pediatr Res 53: 654–662. doi:10.1203/01.PDR.0000055867.83310.9E.PubMedCrossRefGoogle Scholar
  36. Pratt OEA (1980) New approach to the treatment of phenylketonuria. J Ment Defic Res 24: 203–217.PubMedGoogle Scholar
  37. Puglisi-Allegra S, Cabib S, Pascucci T, et al (2000) Dramatic brain aminergic deficit in a genetic mouse model of phenylketonuria. Neuroreport 11: 1361–1364. doi:10.1097/00001756-200004270-00042.PubMedCrossRefGoogle Scholar
  38. Ramakers GJ (2002) Rho proteins, mental retardation and the cellular basis of cognition. Trends Neurosci 25: 191–199. doi:10.1016/S0166-2236(00)02118-4.PubMedCrossRefGoogle Scholar
  39. Schindeler S, Ghosh-Jerath S, Thompson S, et al (2007) The effects of large neutral amino acid supplements in PKU: an MRS and neuropsychological study. Mol Genet Metab 91: 48–54. doi:10.1016/j.ymgme.2007.02.002.PubMedCrossRefGoogle Scholar
  40. Schmidt E, Burgard P, Rupp A (1996) Effects of concurrent phenylalanine levels on sustained attention and calculation speed in patients treated early for phenylketonuria. Eur J Pediatr 155(Supplement 1): S82–S86. doi:10.1007/PL00014258.PubMedCrossRefGoogle Scholar
  41. Scriver CR (2001) Hyperphenylalaninemia: phenylalanine hydroxylase deficiency. In: Scriver CR, Beaudet AL, SlyWS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc. eds. The Metabolic and Molecular Bases of InheritedDisease, 8th edn. New York: McGraw-Hill, 1667–1724.Google Scholar
  42. Scriver CR, Waters PJ (1999) Monogenic traits are not simple: lessons from phenylketonuria. Trends Genet 15: 267–272. doi:10.1016/S0168-9525(99)01761-8.PubMedCrossRefGoogle Scholar
  43. Shefer S, Tint GS, Jean-Guillaume D, et al (2000) Is there a relationship between 3-hydroxy-3-methylglutaryl coenzyme a reductase activity and forebrain pathology in the PKU mouse? J Neurosci Res 61: 549–563. doi:10.1002/1097-4547(20000901)61:5<549::AID-JNR10>3.0.CO;2-0.PubMedCrossRefGoogle Scholar
  44. Shiman R, Akino M, Kaufman S (1971) Solubilization and partial purification of tyrosine hydroxylase from bovine adrenal medulla. J Biol Chem 246: 1330–1340.PubMedGoogle Scholar
  45. Smith CB, Kang J (2000) Cerebral protein synthesis in a genetic mouse model of phenylketonuria. Proc Natl Acad Sci U S A 97: 11014–11019. doi:10.1073/pnas.97.20.11014.PubMedCrossRefGoogle Scholar
  46. Smith I, Knowles J (2000) Behaviour in early treated phenylketonuria: a systematic review. Eur J Pediatr 159(Supplement 2): S89–S93. doi:10.1007/PL00014392.PubMedCrossRefGoogle Scholar
  47. Smith QR, Momma S, Aoyagi M, Rapoport SI (1987) Kinetics of neutral amino acid transport across the blood–brain barrier. J Neurochem 49: 1651–1658. doi:10.1111/j.1471-4159.1987.tb01039.x.PubMedCrossRefGoogle Scholar
  48. Stemerdink BA, Kalverboer AF, van der Meere JJ, et al (2000) Behaviour and school achievement in patients with early and continuously treated phenylketonuria. J Inherit Metab Dis 23: 548–562. doi:10.1023/A:1005669610722.PubMedCrossRefGoogle Scholar
  49. Surtees R, Blau N (2000) The neurochemistry of phenylketonuria. Eur J Pediatr 159 (Supplement 2): S109–S113. doi:10.1007/PL00014370.PubMedCrossRefGoogle Scholar
  50. Ullrich K, Weglage J, Oberwittler C, et al (1994) Effect of l-dopa on pattern visual evoked potentials (P-100) and neuropsychological tests in untreated adult patients with phenylketonuria. J Inherit Metab Dis 17: 349–352. doi:10.1007/BF00711827.PubMedCrossRefGoogle Scholar
  51. van Spronsen FJ, van RM, Bekhof J, Koch R, Smit PG (2001) Phenylketonuria: tyrosine supplementation in phenylalanine-restricted diets. Am J Clin Nutr 73: 153–157.PubMedGoogle Scholar
  52. Weglage J, Pietsch M, Funders B, Koch HG, Ullrich K (1996) Deficits in selective and sustained attention processes in early treated children with phenylketonuria—result of impaired frontal lobe functions? Eur J Pediatr 155: 200–204. doi:10.1007/BF01953938.PubMedCrossRefGoogle Scholar
  53. Weglage J, Wiedermann D, Moller H, Ullrich K (1998) Pathogenesis of different clinical outcomes in spite of identical genotypes and comparable blood phenylalanine concentrations in phenylketonurics. J Inherit Metab Dis 21: 181–182. doi:10.1023/A:1005328717095.PubMedCrossRefGoogle Scholar
  54. Weglage J, Wiedermann D, Denecke J, et al (2001) Individual blood–brain barrier phenylalanine transport determines clinical outcome in phenylketonuria. Ann Neurol 50: 463–467. doi:10.1002/ana.1226.PubMedCrossRefGoogle Scholar
  55. Welsh MC, Pennington BF, Ozonoff S, Rouse B, McCabe ER (1990) Neuropsychology of early-treated phenylketonuria: specific executive function deficits. Child Dev 61: 1697–1713. doi:10.2307/1130832.PubMedCrossRefGoogle Scholar
  56. White DA, Nortz MJ, Mandernach T, Huntington K, Steiner RD (2001) Deficits in memory strategy use related to prefrontal dysfunction during early development: evidence from children with phenylketonuria. Neuropsychology 15: 221–229. doi:10.1037/0894-4105.15.2.221.PubMedCrossRefGoogle Scholar
  57. White DA, Nortz MJ, Mandernach T, Huntington K, Steiner RD (2002) Age-related working memory impairments in children with prefrontal dysfunction associated with phenylketonuria. J Int Neuropsychol Soc 8(1): 1–11. doi:10.1017/S1355617702811018.PubMedCrossRefGoogle Scholar
  58. Zagreda L, Goodman J, Druin DP, McDonald D, Diamond A (1999) Cognitive deficits in a genetic mouse model of the most common biochemical cause of human mental retardation. J Neurosci 19: 6175–6182.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • F. J. van Spronsen
    • 1
    • 2
  • Marieke Hoeksma
    • 1
    • 2
  • Dirk-Jan Reijngoud
    • 2
    • 3
  1. 1.Beatrix Children’s HospitalUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
  2. 2.Center for Liver, Digestive and Metabolic Diseases, GUIDE Graduate School for Drug ExplorationUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
  3. 3.Laboratory of Metabolic DiseasesUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands

Personalised recommendations