Journal of Inherited Metabolic Disease

, Volume 32, Issue 1, pp 22–26 | Cite as

Significance of genotype in tetrahydrobiopterin-responsive phenylketonuria

  • F. K. Trefz
  • D. Scheible
  • H. Götz
  • G. Frauendienst-Egger
BH4 and PKU



The value of genotyping to identify tetrahydrobiopterin-responsive (BH4-responsive) patients with phenylalanine hydroxylase (PAH) deficiency is a matter of debate.


We reviewed 250 cases of patients with PAH deficiency, using published data from 198 cases and unpublished data from 52 cases of patients attending our own clinic. Patients underwent analyses for BH4 load and genetic mutations. Partial and full BH4 responses were defined as a 10–29% decrease and a ≥30% decrease from baseline in blood phenylalanine levels, respectively. BH4-responsive alleles were identified from BH4-responsive patients as either homozygous for a specific allele or compound heterozygous for that allele with a null mutation.


Most inconsistencies between observed genotype and BH4 response were associated with mutations in the regulatory domain of PAH (p.R68S, p.I65T, p.L48S and p.F39C), where 20/62 alleles (32.2%) were non-responsive. In the catalytic domain (mutations p.Y414C, p.R261Q, p.E390G, p.A300S, p.R241C, p.A403V and p.V388M), only 8/125 alleles (6.4%) were non-responsive. Seven patients had a genotype with two BH4-responsive alleles resulting in no response or only a partial response to BH4. Ten patients had identical genotypes but inconsistent responses in BH4 load.


These results show that BH4 non-responsiveness is associated with genotype. However, patients with mutations in the regulatory domain show inconsistent results. In patients with two responsive alleles, non-responsiveness may be related to negative inter-allelic complementation. In patients with the same genotype and inconsistent results for BH4 load, external factors such as intestinal absorption of BH4, catabolic conditions or other genetic factors may be responsible. Further in vitro studies are necessary to clarify the genotype–phenotype correlation in patients with BH4-responsive PKU.





phenylalanine hydroxylase






  1. Blau N, Bernegger C, Trefz FK (Mar 2003) Tetrahydrobiopterin-responsive hyperphenylalaninaemia due to homozygous mutations in the phenylalanine hydroxylase gene. Eur J Pediatr 162(3): 196.PubMedGoogle Scholar
  2. Baldellou-Vázquez A, Salazar García-Blanco MI, Ruiz-Echarri Zalaya MP, et al (2006) Tetrahydrobiopterin therapy for hyperphenylalaninemia due to phenylalanine hydroxylase deficiency. When and how? An Pediatr (Barc) 64: 146–152. doi:10.1157/13084174.CrossRefGoogle Scholar
  3. Bardelli T, Donati MA, Gasperini S, et al (2002) Two novel genetic lesions and a common BH4-responsive mutation of the PAH gene in Italian patients with hyperphenylalaninemia. Mol Genet Metab 77(3): 260–266. doi:10.1016/S1096-7192(02)00166-X.PubMedCrossRefGoogle Scholar
  4. Desviat LR, Pérez B, Bèlanger-Quintana A, et al (2004) Tetrahydrobiopterin responsiveness: results of the BH4 loading test in 31 Spanish PKU patients and correlation with their genotype. Mol Genet Metab 83: 157–162. doi:10.1016/j.ymgme.2004.06.007.PubMedCrossRefGoogle Scholar
  5. Dipple KM, McCabe ER (2000) Modifier genes convert “simple” Mendelian disorders to complex traits. Mol Genet Metab 71: 43–50. doi:10.1006/mgme.2000.3052.PubMedCrossRefGoogle Scholar
  6. Erlandsen H, Pey AL, Gámez A, et al (2004) Correction of kinetic and stability defects by tetrahydrobiopterin in phenylketonuria patients with certain phenylalanine hydroxylase mutations. Proc Natl Acad Sci U S A 101(48): 16903–16908. doi:10.1073/pnas.0407256101.PubMedCrossRefGoogle Scholar
  7. Fiege B, Ballhausen D, Kierat L, et al (2004) Plasma tetrahydrobiopterin and its pharmacokinetic following oral administration. Mol Genet Metab 81(1): 45–51. doi:10.1016/j.ymgme.2003.09.014.PubMedCrossRefGoogle Scholar
  8. Fiege B, Bonafé L, Ballhausen D, et al (2005) Extended tetrahydrobiopterin loading test in the diagnosis of cofactor-responsive phenylketonuria: a pilot study. Mol Genet Metab 86(Supplement 1): S91–95. doi:10.1016/j.ymgme.2005.09.014.PubMedCrossRefGoogle Scholar
  9. Hennermann JB, Bührer C, Blau N, et al (2005) Long-term treatment with tetrahydrobiopterin increases phenylalanine tolerance in children with severe phenotype of phenylketonuria. Mol Genet Metab 86(Supplement 1): S86–90. doi:10.1016/j.ymgme.2005.05.013.PubMedCrossRefGoogle Scholar
  10. Kaufman S (1976) Phenylketonuria: biochemical mechanisms. Adv Neurochem 2: 1–132.Google Scholar
  11. Kure S, Hou DC, Ohura T, et al (1999) Tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. J Pediatr 135(3): 375–378. doi:10.1016/S0022-3476(99)70138-1.PubMedCrossRefGoogle Scholar
  12. Lässker U, Zschocke J, Blau N, et al (2002) Tetrahydrobiopterin responsiveness in phenylketonuria. Two new cases and a review of molecular genetic findings. J Inherit Metab Dis 25(1): 65–70. doi:10.1023/A:1015194002487.PubMedCrossRefGoogle Scholar
  13. Leandro J, Nascimento C, de Almeida IT, et al (2006) Co-expression of different subunits of human phenylalanine hydroxylase: evidence of negative interallelic complementation. Biochim Biophys Acta 1762: 544–550.PubMedGoogle Scholar
  14. Lee DH, Koo SK, Lee KS, et al (2004) The molecular basis of phenylketonuria in Koreans. J Hum Genet 49(11): 617–621. doi:10.1007/s10038-004-0197-5.PubMedCrossRefGoogle Scholar
  15. Leuzzi V, Carducci C, Carducci C, et al (2006) The spectrum of phenylalanine variations under tetrahydrobiopterin load in subjects affected by phenylalanine hydroxylase deficiency. J Inherit Metab Dis 29: 38–46. doi:10.1007/s10545-006-0096-3.PubMedCrossRefGoogle Scholar
  16. Levy HL, Milanowski A, Chakrapani A, et al (2007a) Sapropterin Research Group. Efficacy of sapropterin dihydrochloride (tetrahydrobiopterin, 6R-BH4) for reduction of phenylalanine concentration in patients with phenylketonuria: a phase III randomised placebo-controlled study. Lancet 370: 504–510. doi:10.1016/S0140-6736(07)61234-3.PubMedCrossRefGoogle Scholar
  17. Levy H, Burton B, Cederbaum S, et al (2007b) Recommendations for evaluation of responsiveness to tetrahydrobiopterin (BH4) in phenylketonuria and its use in treatment. Mol Genet Metab 92: 287–291. doi:10.1016/j.ymgme.2007.09.017.PubMedCrossRefGoogle Scholar
  18. Lindner M, Steinfeld R, Burgard P, et al (2003) Tetrahydrobiopterin sensitivity in German patients with mild phenylalanine hydroxylase deficiency. Hum Mutat 21: 400. doi:10.1002/humu.9117.PubMedCrossRefGoogle Scholar
  19. Martinez MA. PAH as misfolding disease. International Conference on tetrahydrobiopterin, PKU and NOS. March 23–28 2008, St. Moritz-Champfer, Switzerland. Google Scholar
  20. Matalon R, Michals-Matalon K, Koch R, et al (2005) Response of patients with phenylketonuria in the US to tetrahydrobiopterin. Mol Genet Metab 86(Supplement 1): S17–21. doi:10.1016/j.ymgme.2005.06.024.PubMedCrossRefGoogle Scholar
  21. Milstien S, Kaufman S (1975) Studies on the phenylalanine hydroxylase system in liver slices. J Biol Chem 250(12): 4777–4781.PubMedGoogle Scholar
  22. Muntau AC, Röschinger W, Habich M, et al (2002) Tetrahydrobiopterin as an alternative treatment for mild phenylketonuria. N Engl J Med 347: 2122–2132. doi:10.1056/NEJMoa021654.PubMedCrossRefGoogle Scholar
  23. Pérez-Dueñas B, Vilaseca MA, Mas A, et al (2004) Tetrahydrobiopterin responsiveness in patients with phenylketonuria. Clin Biochem 37: 1083–1090. doi:10.1016/j.clinbiochem.2004.09.005.PubMedCrossRefGoogle Scholar
  24. Pey AL, Desviat LR, Gámez A, et al (2003) Phenylketonuria: genotype-phenotype correlations based on expression analysis of structural and functional mutations in PAH. Hum Mutat 21(4): 370–378. doi:10.1002/humu.10198.PubMedCrossRefGoogle Scholar
  25. Pey AL, Pérez B, Desviat LR, et al (2004) Mechanisms underlying responsiveness to tetrahydrobiopterin in mild phenylketonuria mutations. Hum Mutat 24(5): 388–399. doi:10.1002/humu.20097.PubMedCrossRefGoogle Scholar
  26. Scriver CR, Kaufman S (2001) Hyperphenylalaninemia: phenylalanine hydroxylase deficiency. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc. eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edn. New York: McGraw-Hill, 1667–1724.Google Scholar
  27. Shintaku H, Kure S, Ohura T, et al (2004) Long-term treatment and diagnosis of tetrahydrobiopterin-responsive hyperphenylalaninemia with a mutant phenylalanine hydroxylase gene. Pediatr Res 55: 425–430. doi:10.1203/01.PDR.0000111283.91564.7E.PubMedCrossRefGoogle Scholar
  28. Shintaku H, Fujioka H, Sawada Y, et al (2005) Plasma biopterin levels and tetrahydrobiopterin responsiveness. Mol Genet Metab 86(Supplement 1): S104–106. doi:10.1016/j.ymgme.2005.06.018.PubMedCrossRefGoogle Scholar
  29. Töpel T, Scholz U, Mischke U, et al (2002) Supporting genotype–phenotype correlation with the rare metabolic diseases database Ramedis. Silico Biol 2(3): 407–414.CrossRefGoogle Scholar
  30. Trefz FK, Scheible D, Frauendienst-Egger G, et al (2005) Long-term treatment of patients with mild and classical phenylketonuria by tetrahydrobiopterin. Mol Genet Metab 86(Supplement 1): S75–80. doi:10.1016/j.ymgme.2005.06.026.PubMedCrossRefGoogle Scholar
  31. Zurflüh MR, Zschocke J, Lindner M, et al (2008) Molecular genetics of tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. Hum Mutat 29(1): 167–175. doi:10.1002/humu.20637.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • F. K. Trefz
    • 1
  • D. Scheible
    • 1
  • H. Götz
    • 2
  • G. Frauendienst-Egger
    • 1
  1. 1.Klinik für Kinder und Jugendmedizin Kreiskliniken Reutlingen GmbHReutlingenGermany
  2. 2.Software Service GmbHSchwabachGermany

Personalised recommendations