Phenotypic heterogeneity of N370S homozygotes with type I Gaucher disease: An analysis of 798 patients from the ICGG Gaucher Registry

  • C. Fairley
  • A. Zimran
  • M. Phillips
  • M. Cizmarik
  • J. Yee
  • N. Weinreb
  • S. Packman
Original Article

Summary

Gaucher disease is a lysosomal storage disorder caused by a deficiency of the enzyme acid β-glucosidase. The most prevalent mutant genotype in type I Gaucher disease, N370S/N370S, is commonly thought to confer a mild phenotype presenting in adulthood. To characterize a subset of more severely affected N370S homozygotes, we assessed the phenotypes at or near the time of diagnosis of all N370S homozygotes with available data enrolled in the International Collaborative Gaucher Group Gaucher Registry. N370S compound heterozygotes were analyzed for comparison, as they are expected to present with a more severe phenotype. Of 798 N370S homozygotes and 1,278 N370S compound heterozygotes identified, 32% (251/788) and 65% (820/1269), respectively, were diagnosed before age 20 years. At diagnosis, N370S homozygotes as compared to N370S compound heterozygotes had the following clinical characteristics: irreversible skeletal lesions 17% (34/198) for N370S homozygotes versus 26% (76/290) for N370S compound heterozygotes; anaemia 18% (59/327) versus 29% (145/494); thrombocytopenia 52% (170/327) versus 62% (281/453); hepatomegaly 44% (83/190) versus 72% (141/195); splenomegaly 73% (142/194) versus 91% (178/195); and osteopenia or osteoporosis 48.6% (34/70) versus 51% (25/49). Some N370S homozygotes exhibited more severe clinical manifestations: 9% (29/327) had severe thrombocytopenia; 3% (5/190) had severe hepatomegaly; 11% (22/194) had severe splenomegaly; 7% (18/255) reported bone crises; 11% (8/70) had osteoporosis. In conclusion, N370S homozygosity does not consistently confer a mild, adult-onset phenotype. Gaucher disease patients with the N370S/N370S genotype exhibit a high degree of phenotypic heterogeneity and some may be at risk for early disease onset and severe clinical manifestations.

References

  1. Agmon V, Cherbu S, Dagan A, Grace M, Grabowski GA, Gatt S (1993) Synthesis and use of novel fluorescent glycosphingolipids for estimating beta-glucosidase activity in vitro in the absence of detergents and subtyping Gaucher disease variants following administration into intact cells. Biochim Biophys Acta 1170: 72–79.PubMedGoogle Scholar
  2. Azuri J, Elstein D, Lahad A, Abrahamov A, Hadas-Halpern I, Zimran A (1998) Asymptomatic Gaucher disease implications for large-scale screening. Genet Test 2: 297–299.PubMedCrossRefGoogle Scholar
  3. Beutler E, Gelbart T (1994) Erroneous assignment of Gaucher disease genotype as a consequence of a complete gene deletion. Hum Mutat 4: 212–216. doi:10.1002/humu.1380040307.PubMedCrossRefGoogle Scholar
  4. Beutler E, Grabowski GA (2006) Gaucher Disease. In Scriver CR, Beaudet AL, Sly WS, et al, eds. The Online Metabolic and Molecular Bases of Inherited Disease. New York: McGraw-Hill, 3635–3668.Google Scholar
  5. Beutler E, Beutler L, West C (2004) Mutations in the gene encoding cytosolic beta-glucosidase in Gaucher disease. J Lab Clin Med 144: 65–68. doi:10.1016/j.lab.2004.03.013.PubMedCrossRefGoogle Scholar
  6. Bornstein P, McKinney CE, LaMarca ME, et al (1995) Metaxin, a gene contiguous to both thrombospondin 3 and glucocerebrosidase, is required for embryonic development in the mouse: implications for Gaucher disease. Proc Natl Acad Sci U S A 92: 4547–4551. doi:10.1073/pnas.92.10.4547.PubMedCrossRefGoogle Scholar
  7. Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125: 443–451. doi:10.1016/j.cell.2006.04.014.PubMedCrossRefGoogle Scholar
  8. Charrow J, Andersson HC, Kaplan P, et al (2000) The Gaucher registry: demographics and disease characteristics of 1698 patients with Gaucher disease. Arch Intern Med 160: 2835–2843. doi:10.1001/archinte.160.18.2835.PubMedCrossRefGoogle Scholar
  9. Chaudhuri TK, Paul S (2006) Protein-misfolding diseases and chaperone-based therapeutic approaches. FEBS J 273: 1331–1349. doi:10.1111/j.1742-4658.2006.05181.x.PubMedCrossRefGoogle Scholar
  10. Elleder M (2006) Glucosylceramide transfer from lysosomes—the missing link in molecular pathology of glucosylceramidase deficiency: a hypothesis based on existing data. J Inherit Metab Dis 29: 707–715. doi:10.1007/s10545-006-0411-z.PubMedCrossRefGoogle Scholar
  11. Grabowski G, Kolodny EH, Weinreb N (2006) Gaucher disease: phenotypic and genetic variation. In Scriver CR, Beaudet AL, Valle D, Sly WS, Vogelstein B, Kinzler KW, and Childs B, eds. The Online Metabolic and Molecular Basis of Inherited Metabolic Disease. New York: McGraw-Hill, Available at: http://genetics.accessmedicine.com/mmbid/public/co_contents/toc_part16.html.
  12. Gregersen N (2006) Protein misfolding disorders: pathogenesis and intervention. J Inherit Metab Dis 29: 456–470. doi:10.1007/s10545-006-0301-4.PubMedCrossRefGoogle Scholar
  13. Horowitz M, Zimran A (1994) Mutations causing Gaucher disease. Hum Mutat 3: 1–11. doi:10.1002/humu.1380030102.PubMedCrossRefGoogle Scholar
  14. Koprivica V, Stone DL, Park JK, et al (2000) Analysis and classification of 304 mutant alleles in patients with type 1 and type 3 Gaucher disease. Am J Hum Genet 66: 1777–1786. doi:10.1086/302925.PubMedCrossRefGoogle Scholar
  15. Lachmann RH, Grant IR, Halsall D, Cox TM (2004) Twin pairs showing discordance of phenotype in adult Gaucher’s disease. QJM 97: 199–204. doi:10.1093/qjmed/hch036.PubMedCrossRefGoogle Scholar
  16. Mao R, O’Brien JF, Rao S, et al (2001) Identification of a 55-bp deletion in the glucocerebrosidase gene in Gaucher disease: phenotypic presentation and implications for mutation detection assays. Mol Genet Metab 72: 248–253. doi:10.1006/mgme.2000.3141.PubMedCrossRefGoogle Scholar
  17. Meikle PJ, Hopwood JJ, Clague AE, Carey WF (1999) Prevalence of lysosomal storage disorders. JAMA 281: 249–254. doi:10.1001/jama.281.3.249.PubMedCrossRefGoogle Scholar
  18. Nielsen KB, Sorensen S, Cartegni L, et al (2007) Seemingly neutral polymorphic variants may confer immunity to splicing-inactivating mutations: a synonymous SNP in exon 5 of MCAD protects from deleterious mutations in a flanking exonic splicing enhancer. Am J Hum Genet 80: 416–432.PubMedCrossRefGoogle Scholar
  19. Ron I, Horowitz M (2005) ER retention and degradation as the molecular basis underlying Gaucher disease heterogeneity. Hum Mol Genet 14: 2387–2398. doi:10.1093/hmg/ddi240.PubMedCrossRefGoogle Scholar
  20. Sibille A, Eng CM, Kim SJ, Pastores G, Grabowski GA (1993) Phenotype/genotype correlations in Gaucher disease type I: clinical and therapeutic implications. Am J Hum Genet 52: 1094–1101.PubMedGoogle Scholar
  21. Sidransky E (2004) Gaucher disease: complexity in a “simple” disorder. Mol Genet Metab 83: 6–15. doi:10.1016/j.ymgme.2004.08.015.PubMedCrossRefGoogle Scholar
  22. Suwannarat P, Keeratichamroen S, Wattanasirichaigoon D, et al (2007) Molecular characterization of type 3 (neuronopathic) Gaucher disease in Thai patients. Blood Cells Mol Dis 39: 348–352. doi:10.1016/j.bcmd.2007.06.015.PubMedCrossRefGoogle Scholar
  23. Tayebi N, Stern H, Dymarskaia I, Herman J, Sidransky E (1996) 55-base pair deletion in certain patients with Gaucher disease complicates screening for common Gaucher alleles. Am J Med Genet 66: 316–319. doi:10.1002/(SICI)1096-8628(19961218)66:3<316::AID-AJMG15>3.0.CO;2-P.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • C. Fairley
    • 1
    • 5
  • A. Zimran
    • 2
  • M. Phillips
    • 2
  • M. Cizmarik
    • 3
  • J. Yee
    • 3
  • N. Weinreb
    • 4
  • S. Packman
    • 1
    • 6
  1. 1.UCSFSan FranciscoUSA
  2. 2.Shaare-Zedek Medical CentreJerusalemIsrael
  3. 3.Genzyme CorporationCambridgeUSA
  4. 4.University Research Foundation for Lysosomal Storage DisordersCoral SpringsUSA
  5. 5.Genzyme CorporationCambridgeUSA
  6. 6.Department of Pediatrics, Division of Medical GeneticsUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations