High frequency of missense mutations in glycogen storage disease type VI

  • N. J. Beauchamp
  • J. Taybert
  • M. P. Champion
  • V. Layet
  • P. Heinz-Erian
  • A. Dalton
  • M. S. Tanner
  • E. Pronicka
  • M. J. Sharrard
Original Article

Summary

Deficiency of liver glycogen phosphorylase in glycogen storage disease (GSD) type VI results in a reduced ability to mobilize glucose from glycogen. Six mutations of the PYGL gene, which encodes the liver isoform of the enzyme, have been identified in the literature. We have characterized eight patients from seven families with GSD type VI and identified 11 novel PYGL gene defects. The majority of the mutations were missense, resulting in the substitution of highly conserved residues. These could be grouped into those that were predicted to affect substrate binding (p.V456M, p.E673K, p.S675L, p.S675T), pyridoxal phosphate binding (p.R491C, p.K681T), or activation of glycogen phosphorylase (p.Q13P) or that had an unknown effect (p.N632I and p.D634H). Two mutations were predicted to result in null alleles, p.R399X and [c.1964_1969inv6;c.1969+1_+4delGTAC]. Only 7 of the 23 (30%) reported PYGL alleles carry nonsense, splice site or frameshift mutations compared to 68–80% of affected alleles of the highly homologous muscle glycogen phosphorylase gene, PYGM, that underlie McArdle disease. There was heterogeneity in the clinical symptoms observed in affected individuals. These varied from hepatomegaly and subclinical hypoglycaemia, to severe hepatomegaly with recurrent severe hypoglycaemia and postprandial lactic acidosis. We conclude that deficiency of liver glycogen phosphorylase is predominantly the result of missense mutations affecting enzyme activity. There are no common mutations and the severity of clinical symptoms varies significantly.

References

  1. Andreeva IE, Rice NA, Carlson GM (2002) The regulatory alpha subunit of phosphorylase kinase may directly participate in the binding of glycogen phosphorylase. Biochemistry (Mosc) 67: 1197–1202.CrossRefGoogle Scholar
  2. Barford D, Johnson LN (1989) The allosteric transition of glycogen phosphorylase. Nature 340: 609–616.CrossRefPubMedGoogle Scholar
  3. Bonfield JK, Rada C, Staden R (1998) Automated detection of point mutations using fluorescent sequence trace subtraction. Nucleic Acids Res 26: 3404–3409.CrossRefPubMedGoogle Scholar
  4. Bruno C, Cassandrini D, Martinuzzi A, et al (2006) McArdle disease: the mutation spectrum of PYGM in a large Italian cohort. Hum Mutat 27: 718.CrossRefPubMedGoogle Scholar
  5. Buchbinder JL, Rath VL, Fletterick RJ (2001) Structural relationships among regulated and unregulated phosphorylases. Annu Rev Biophys Biomol Struct 30: 191–209.CrossRefPubMedGoogle Scholar
  6. Burwinkel B, Bakker HD, Herschkovitz E, Moses SW, Shin YS, Kilimann MW (1998) Mutations in the liver glycogen phosphorylase gene (PYGL) underlying glycogenosis type VI. Am J Hum Genet 62: 785–791.CrossRefPubMedGoogle Scholar
  7. Chang JC, Kan YW (1979) beta 0 thalassemia, a nonsense mutation in man. Proc Natl Acad Sci USA 76: 2886–2889.CrossRefPubMedGoogle Scholar
  8. Chang S, Rosenberg MJ, Morton H, Francomano CA, Biesecker LG (1998) Identification of a mutation in liver glycogen phosphorylase in glycogen storage disease type VI. Hum Mol Genet 7: 865–870.CrossRefPubMedGoogle Scholar
  9. DeLano WL (2002) The PyMOL Molecular Graphics System on World Wide Web. http://www.pymol.org.
  10. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126–2132.CrossRefPubMedGoogle Scholar
  11. Geremia S, Campagnolo M, Schinzel R, Johnson LN (2002) Enzymatic catalysis in crystals of Escherichia coli maltodextrin phosphorylase. J Mol Biol 322: 413–423.CrossRefPubMedGoogle Scholar
  12. Hudson JW, Golding GB, Crerar MM (1993) Evolution of allosteric control in glycogen phosphorylase. J Mol Biol 234: 700–721.CrossRefPubMedGoogle Scholar
  13. Lederer B, Stalmans W (1976) Human liver glycogen phosphorylase. Kinetic properties and assay in biopsy specimens. Biochem J 159: 689–695.PubMedGoogle Scholar
  14. Lowe ED, Noble ME, Skamnaki VT, Oikonomakos NG, Owen DJ, Johnson LN (1997) The crystal structure of a phosphorylase kinase peptide substrate complex: kinase substrate recognition. EMBO J 16: 6646–6658.CrossRefPubMedGoogle Scholar
  15. Martin JL, Johnson LN, Withers SG (1990) Comparison of the binding of glucose and glucose 1-phosphate derivatives to T-state glycogen phosphorylase b. Biochemistry 29: 10745–10757.CrossRefPubMedGoogle Scholar
  16. Martín MA, Rubio JC, Buchbinder J, et al (2001) Molecular heterogeneity of myophosphorylase deficiency (McArdle’s disease): a genotype–phenotype correlation study. Ann Neurol 50: 574–581.CrossRefPubMedGoogle Scholar
  17. Newgard CB, Fletterick RJ, Anderson LA, Lebo RV (1987) The polymorphic locus for glycogen storage disease VI (liver glycogen phosphorylase) maps to chromosome 14. Am J Hum Genet 40: 351–364.PubMedGoogle Scholar
  18. Newgard CB, Littman DR, van Genderen C, Smith M, Fletterick RJ (1988) Human brain glycogen phosphorylase. Cloning, sequence analysis, chromosomal mapping, tissue expression, and comparison with the human liver and muscle isozymes. J Biol Chem 263: 3850–3857.PubMedGoogle Scholar
  19. Oikonomakos NG, Johnson LN, Acharya KR, et al (1987) Pyridoxal phosphate site in glycogen phosphorylase b: structure in native enzyme and in three derivatives with modified cofactors. Biochemistry 26: 8381–8389.CrossRefPubMedGoogle Scholar
  20. Rath VL, Ammirati M, LeMotte PK, et al (2000) Activation of human liver glycogen phosphorylase by alteration of the secondary structure and packing of the catalytic core. Mol Cell 6: 139–148.CrossRefPubMedGoogle Scholar
  21. Reese MG, Eeckman FH, Kulp D, Haussler D (1997) Improved splice site detection in Genie. J Comput Biol 4: 311–323.CrossRefPubMedGoogle Scholar
  22. Rogozin IB, Milanesi L (1997) Analysis of donor splice sites in different eukaryotic organisms. J Mol Evol 45: 50–59.CrossRefPubMedGoogle Scholar
  23. Schinzel R, Palm D (1990) Escherichia coli maltodextrin phosphorylase: contribution of active site residues glutamate-637 and tyrosine-538 to the phosphorolytic cleavage of alpha-glucans. Biochemistry 29: 9956–9962.Google Scholar
  24. Shaltiel S, Hedrick JL, Pocker A, Fischer EH (1969) Reconstitution of apophosphorylase with pyridoxal 5’phosphate analogs. Biochemistry 8: 5189–5196.CrossRefPubMedGoogle Scholar
  25. Tang NL, Hui J, Young E, et al (2003) A novel mutation (G233D) in the glycogen phosphorylase gene in a patient with hepatic glycogen storage disease and residual enzyme activity. Mol Genet Metab 79: 142–145.CrossRefPubMedGoogle Scholar
  26. Xu YH, Carlson GM (1999) Structural features contributing to complex formation between glycogen phosphorylase and phosphorylase kinase. Biochemistry 38: 9562–9569.CrossRefPubMedGoogle Scholar

Copyright information

© SSIEM and Springer 2007

Authors and Affiliations

  • N. J. Beauchamp
    • 1
  • J. Taybert
    • 2
  • M. P. Champion
    • 3
  • V. Layet
    • 4
  • P. Heinz-Erian
    • 5
  • A. Dalton
    • 6
  • M. S. Tanner
    • 1
  • E. Pronicka
    • 2
  • M. J. Sharrard
    • 7
  1. 1.Academic Unit of Child HealthUniversity of SheffieldSheffieldUK
  2. 2.Department of Metabolic Diseases, Endocrinology and DiabetologyThe Children’s Memorial Health InstituteWarsawPoland
  3. 3.Department of Paediatric Metabolic MedicineEvelina Children’s Hospital, Guy’s and St Thomas’ NHS Foundation TrustLondonUK
  4. 4.Unité de GénétiqueHôpital FlaubertLe HavreFrance
  5. 5.Department of PediatricsInnsbruck Medical UniversityInnsbruckAustria
  6. 6.Sheffield Molecular Genetics ServiceSheffield Children’s NHS Foundation TrustSheffieldUK
  7. 7.Paediatric MedicineSheffield Children’s NHS Foundation TrustSheffieldUK

Personalised recommendations