Journal of Inherited Metabolic Disease

, Volume 29, Issue 4, pp 564–571 | Cite as

CCL18: A urinary marker of Gaucher cell burden in Gaucher patients

  • Rolf G. Boot
  • Marri Verhoek
  • Mirjam Langeveld
  • G. Herma Renkema
  • Carla E. M. Hollak
  • Jan J. Weening
  • Wilma E. Donker-Koopman
  • Johanna E. Groener
  • Johannes M. F. G. Aerts
original article

Abstract

Glucosylceramide-laden tissue macrophages in Gaucher patients secrete large quantities of chitotriosidase and CC chemokine ligand 18 (CCL18), resulting in markedly increased plasma levels. We have comparatively investigated the occurrence of both parameters in plasma and urine samples of Gaucher patients. Chitotriosidase was high in urine samples of some symptomatic patients, but elevations did not correlate with increased plasma concentrations. Urinary chitotriosidase was particularly high in a patient with severe kidney involvement and local storage cell infiltration. Urinary levels of CCL18 were also highly elevated in samples from Gaucher patients as compared to controls. The median value of the CCL18/creatinine ratio in urine samples of 31 Gaucher patients was 143.3 pg/μmol (range 32–551) and in those of 12 normal subjects was 4.1 pg/μmol (range 1.3–6.8). In sharp contrast to chitotriosidase, increases in the low-molecular-mass chemokine CCL18 in urine and plasma specimens of Gaucher patients correlated well. A correlation was also observed for reductions in urinary and plasma CCL18 following therapy. It is concluded that assessment of urinary CCL18 of Gaucher patients gives insight into the total body burden on Gaucher cells, whereas that of chitotriosidase does not. Urinary chitotriosidase appears rather to be a reflection of renal pathology.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aerts JM, Donker-Koopman WE, Koot M, et al (1986) Comparison of the properties of a soluble form of glucocerebrosidase from human urine with those of the membrane-associated tissue enzyme. Biochim Biophys Acta 863: 63–70.PubMedCrossRefGoogle Scholar
  2. Aerts JM, Hollak C, Boot R, et al (2003) Biochemistry of glycosphingolipids storage disorders: implications for therapeutic intervention. Philos Trans R Soc Lond B Biol Sci 358: 905–914.PubMedCrossRefGoogle Scholar
  3. Aguilera B, Ghauharali-Van Der Vlugt K, Helmond MT, et al (2003) Transglycosidase activity of chitotriosidase: improved enzymatic assay for the human macrophage chitinase. J Biol Chem 278: 40911–40916.PubMedCrossRefGoogle Scholar
  4. Baldellou A, Andria G, Campbell PE, et al (2004) Paediatric non-neuronopathic Gaucher disease: recommendations for treatment and monitoring. Eur J Pediatr 163: 67–75.PubMedCrossRefGoogle Scholar
  5. Barton NW, Brady RO, Dambrosia JM, et al (1991) Replacement therapy for inherited enzyme deficiency: macrophage-targeted glucocerebrosidase for Gaucher's disease. N Engl J Med 324: 1464–1470.PubMedCrossRefGoogle Scholar
  6. Beutler E, Grabowski GA (2001) Gaucher disease. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc. eds The Metabolic and Molecular Bases of Inherited Disease, 8th edn. New York: McGraw-Hill, 3635–3668.Google Scholar
  7. Boot RG, Renkema GH, Strijland A, et al (1995) Cloning of a cDNA encoding chitotriosidase, a human chitinase produced by macrophages. J Biol Chem 270: 26252–26256.PubMedCrossRefGoogle Scholar
  8. Boot RG, Renkema GH, Verhoek M, et al (1998) The human chitotriosidase gene. Nature of inherited enzyme deficiency. J Biol Chem 273: 25680–25685.PubMedCrossRefGoogle Scholar
  9. Boot RG, Blommaart EF, Swart E, et al (2001) Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J Biol Chem 276: 6770–6778.PubMedCrossRefGoogle Scholar
  10. Boot RG, Verhoek M, De Fost M, et al (2004) Marked elevation of the chemokine CCL18/PARC in Gaucher disease: a novel surrogate marker for assessing therapeutic intervention. Blood 103: 33–39.PubMedCrossRefGoogle Scholar
  11. Boven LA, van Meurs M, Boot RG, et al (2004) Gaucher cells demonstrate a distinct macrophage phenotype and resemble alternatively activated macrophages. Am J Clin Pathol 122: 359–369.PubMedCrossRefGoogle Scholar
  12. Cox TM (2003) Future perspectives for glycolipid research in medicine. Philos Trans R Soc Lond B Biol Sci 358: 967–973.PubMedCrossRefGoogle Scholar
  13. Cox T, Lachmann R, Hollak C, et al (2000) Novel oral treatment of Gaucher's disease with N-butyldeoxynojirimycin (OGT918) to decrease substrate biosynthesis. Lancet 355: 1481–1485.PubMedCrossRefGoogle Scholar
  14. Cox TM, Aerts JM, Andria G, et al (2003) The role of the iminosugar N-butyldeoxynojirimycin (miglustat) in the management of type I (non-neuronopathic) Gaucher disease: a position statement. J Inherit Metab Dis 26: 513–526.PubMedCrossRefGoogle Scholar
  15. Deegan PB, Moran MT, McFarlane I, et al (2005) Clinical evaluation of chemokine and enzymatic biomarkers of Gaucher disease. Blood Cells Mol Dis 35: 259–267.PubMedCrossRefGoogle Scholar
  16. Hollak CEM, van Weely S, van Oers MHJ, et al (1994) Elevated plasma chitotriosidase: a novel biochemical hallmark of Gaucher disease. J Clin Invest 93: 1288–1292.PubMedCrossRefGoogle Scholar
  17. Hollak CE, Maas M, Aerts JM (2001) Clinically relevant therapeutic endpoints in type I Gaucher disease. J Inherit Metab Dis 24(Supplement 2): 97–105.PubMedCrossRefGoogle Scholar
  18. Moran MT, Schofield JP, Hayman AR, et al (2000) Pathologic gene expression in Gaucher disease: up-regulation of cysteine proteinases including osteoclastic cathepsin K. Blood 96: 1969–1978.PubMedGoogle Scholar
  19. Platt FM, Jeyakumar M, Andersson U, et al (2001) Inhibition of substrate synthesis as a strategy for glycolipid lysosomal storage disease therapy. J Inherit Metab Dis 24: 275–290.PubMedCrossRefGoogle Scholar
  20. Slot C (1965) Plasma creatinine determination. A new and specific Jaffe reaction method. Scand J Clin Lab Invest 17: 381–387.PubMedGoogle Scholar

Copyright information

© SSIEM and Springer 2006

Authors and Affiliations

  • Rolf G. Boot
    • 1
  • Marri Verhoek
    • 1
  • Mirjam Langeveld
    • 2
  • G. Herma Renkema
    • 4
  • Carla E. M. Hollak
    • 2
  • Jan J. Weening
    • 3
  • Wilma E. Donker-Koopman
    • 1
  • Johanna E. Groener
    • 1
  • Johannes M. F. G. Aerts
    • 1
  1. 1.Department of Medical Biochemistry, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Department of Internal Medicine, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Department of Pathology, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
  4. 4.Institute of Medical TechnologyUniversity of TampereTampere

Personalised recommendations