Biomedical Microdevices

, 21:90 | Cite as

Hybrid elastomer–plastic microfluidic device as a convenient model for mimicking the blood–brain barrier in vitro

  • Phuoc Quang Huy Nguyen
  • Duong Duy Duong
  • Jun Dae Kwun
  • Nae Yoon LeeEmail author


In this study, we fabricated a hybrid elastomer–plastic microdevice using the silicone elastomer poly(dimethylsiloxane) (PDMS) and the plastic polycarbonate (PC), to mimic the human blood–brain barrier (BBB) in vitro. Specifically, the microchannel-imprinted elastomer was first coated with 3-aminopropyltriethoxysilane to produce amine-terminated PDMS. Then, simply by conformal contact at room temperature, the amine-functionalized PDMS was bonded to pristine PC through the formation of urethane linkages. Aside from realizing device bonding, the amine functionalization also assisted in subsequent dopamine coating to form polydopamine and provide a stable surface for culturing human endothelial cells and central nervous system-related cells (e.g., astrocytes) inside the microchannels. Successful mimicking of the BBB-like microenvironment was assessed by 3D co-culturing of human endothelial cells and astrocytes, where the microdevice was verified as an acceptable in vitro BBB model according to the following four criteria: the formation of tight junctions at the cell–cell boundaries of the endothelial cells, evaluated by the expression of the tight junction marker ZO-1; the formation of actin filaments, evaluated using rhodamine phalloidin dye; low permeability, tested using the fluorescent tracer 40-kDa FITC-dextran; and good transendothelial electrical resistance (a measure of the tight junction integrity formed between the endothelial cells). The fabricated PDMS–PC microfluidic device ensured simple yet stable device sealing, and simultaneously enhanced BBB-mimicking cell attachment, thus fulfilling all major criteria for its application as a convenient in vitro BBB model.


Poly(dimethylsiloxane) (PDMS)-polycarbonate (PC) hybrid microdevice Blood brain barrier (BBB) Dopamine Tight junction Actin filament Permeability Transendothelial electrical resistance (TEER) 



This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2017R1A2B4008179) and also by the Gachon University research fund of 2018 (GCU-2018-0302).


  1. K.H. Achyuta, A.J. Conway, R.B. Crouse, E.C. Bannister, R.N. Lee, C.P. Katnik, A.A. Behensky, J. Cuevas, S.S. Sundaram, Lab Chip 13, 542–553 (2013)CrossRefGoogle Scholar
  2. G. Adriani, D. Ma, A. Pavesi, R.D. Kamm, E.L.K. Goh, Lab Chip 17, 448–459 (2017)CrossRefGoogle Scholar
  3. G. Arcía-Ponce, A.F. Citalán-Madrid, M. Velázquez-Avila, H. Vargas-Robles, M. Schnoor, Thromb. Haemost. 113, 20–36 (2015)CrossRefGoogle Scholar
  4. K. Bemetz, C. Kober, V.K. Meyer, R. Niessner, M. Seidel, Anal. Bioanal. Chem. 411, 1943–1955 (2019)CrossRefGoogle Scholar
  5. S.N. Bhatia, D.E. Ingber, Nat. Biotechnol. 32, 760–772 (2014)CrossRefGoogle Scholar
  6. N.S. Bhise, J. Ribas, V. Anoharan, Y.S. Zhang, A. Polini, S. Massa, M.R. Dokmeci, A. Khademhosseini, J. Controll, Release 190, 82–93 (2014)CrossRefGoogle Scholar
  7. R. Booth, H. Kim, Lab Chip 12, 1784–1792 (2012)CrossRefGoogle Scholar
  8. J.A. Brown, V. Pensabene, D.A. Markov, V. Allwardt, M.D. Neely, M. Shi, C.M. Britt, O.S. Hoilett, Q. Yang, B.M. Brewer, P.C. Samson, L.J. McCawley, J.M. May, D.J. Webb, D. Li, A.B. Bowman, R.S. Reiserer, J.P. Wikswo, Biomicrofluidics 9, 1–15 (2015)CrossRefGoogle Scholar
  9. J.A. Brown, S.G. Codreanu, M. Shi, S.D. Sherrod, D.A. Markov, M.D. Neely, C.M. Britt, O.S. Hoilett, R.S. Reiserer, P.C. Samson, L.J. McCawley, D.J. Webb, A.B. Bowman, J.P. Wikswo, J. Neuroinflammation 13, 306 (2016)CrossRefGoogle Scholar
  10. X. Chen, S.W. Threlkeld, E.E. Cummings, I. Juan, O. Makeyev, W.G. Besio, J. Gaitanis, W.A. Banks, G.B. Sadowska, B.S. Stonestreet, Neuroscience 226, 89–100 (2012)CrossRefGoogle Scholar
  11. R. Daneman, B.A. Barres, Cell 123, 9–12 (2005)CrossRefGoogle Scholar
  12. C.X. Deng, Ther. Delivery 1, 819–848 (2010)CrossRefGoogle Scholar
  13. M.B. Esch, A.S.T. Smith, J.-M. Prot, C. Oleaga, J.J. Hickman, M.L. Shuler, Adv. Drug Deliv. Rev. 69–70, 158–169 (2014)CrossRefGoogle Scholar
  14. E.W. Esch, A. Bahinski, D. Huh, Nat. Rev. Drug Discov. 14, 248–260 (2015)CrossRefGoogle Scholar
  15. D. Huh, G.A. Hamilton, D.E. Ingber, Trends Cell Biol. 21, 745–754 (2011)CrossRefGoogle Scholar
  16. D. Huh, Y.S. Torisawa, G.A. Hamilton, H.J. Kim, D.E. Ingber, Lab Chip 12, 2156–2164 (2012)CrossRefGoogle Scholar
  17. S. Kuddannaya, J. Bao, Y. Zhang, ACS Appl. Mater. Interfaces 7, 25529–25538 (2015)CrossRefGoogle Scholar
  18. W.Y. Liu, Z.B. Wang, L.C. Zhang, X. Wei, L. Li, CNS Neurosci. Ther. 18, 609–615 (2012)CrossRefGoogle Scholar
  19. C. Luissint, C. Artus, F. Glacial, K. Ganeshamoorthy, P.O. Couraud, Fluids Barriers CNS. 9, 1–12 (2012)CrossRefGoogle Scholar
  20. S. Nag, Acta Neuropathol. 90, 454–460 (1995)CrossRefGoogle Scholar
  21. S. Nakagawa, M.A. Deli, H. Kawaguchi, T. Shimizudani, T. Shimono, Á. Kittele, K. Tanaka, M. Niwa, Neurochem. Int. 54, 253–263 (2009)CrossRefGoogle Scholar
  22. T.P.O. Nguyen, B.M. Tran, N.Y. Lee, Lab Chip 16, 3251–3259 (2016)CrossRefGoogle Scholar
  23. W.M. Pardridge, J. Cereb, Blood Flow Metab. 32, 1959–1972 (2012)CrossRefGoogle Scholar
  24. S.E. Park, A. Georgescu, J.M. Oh, K.W. Kwon, D. Huh, ACS Appl. Mater. Interfaces 11, 23919–23925 (2019)CrossRefGoogle Scholar
  25. E.K. Sackmann, A.L. Fulton, D.J. Beebe, Nature 507, 181–189 (2014)CrossRefGoogle Scholar
  26. J. Seok, H.S. Warren, A.G. Cuenca, M.N. Mindrinos, H.V. Baker, W. Xu, D.R. Richards, G.P. McDonald-Smith, H. Gao, L. Hennessy, C.C. Finnerty, C.M. López, S. Honari, E.E. Moore, J.P. Minei, J. Cuschieri, P.E. Bankey, J.L. Johnson, J. Sperry, A.B. Nathens, T.R. Billiar, M.A. West, M.G. Jeschke, M.B. Klein, R.L. Gamelli, N.S. Gibran, B.H. Brownstein, C. Miller-Graziano, S.E. Calvano, P.H. Mason, J.P. Cobb, L.G. Rahme, S.F. Lowry, R.V. Maier, L.L. Moldawer, D.N. Herndon, R.W. Davis, W. Xiao, R.G. Tompkins, Proc. Natl. Acad. Sci. U. S. A. 110, 3507–3512 (2013)CrossRefGoogle Scholar
  27. Y. Serlin, I. Shelef, B. Knyazer, A. Friedman, Semin. Cell Dev. Biol. 38, 2–6 (2015)CrossRefGoogle Scholar
  28. B. Srinivasan, A.R. Kolli, M.B. Esch, H.E. Abaci, M.L. Shuler, J.J. Hickman, J. Lab, Autom. 20, 107–126 (2015)Google Scholar
  29. L. Tang, N.Y. Lee, Lab Chip 10, 1274–1280 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Phuoc Quang Huy Nguyen
    • 1
  • Duong Duy Duong
    • 1
  • Jun Dae Kwun
    • 2
  • Nae Yoon Lee
    • 1
    Email author
  1. 1.Department of BioNano TechnologyGachon UniversitySeongnam-siSouth Korea
  2. 2.Dr. Park’s HospitalDaeguSouth Korea

Personalised recommendations