Biomedical Microdevices

, 21:80 | Cite as

Microfluidics-based device for the measurement of blood viscosity and its modeling based on shear rate, temperature, and heparin concentration

  • Ruba KhnoufEmail author
  • Dina Karasneh
  • Enas Abdulhay
  • Arwa Abdelhay
  • Weian Sheng
  • Z. Hugh Fan


Blood viscosity measurements are crucial for the diagnosis and understanding of a range of hematological and cardiovascular diseases. Such measurements are heavily used in monitoring patients during and after surgeries, which necessitates the development of a highly accurate viscometer that uses a minimal amount of blood. In this work, we have designed and implemented a microfluidic device that was used to measure fluid viscosity with a high accuracy using less than 10 μl of blood. The device was further used to construct a blood viscosity model based on temperature, shear rate, and anti-coagulant concentration. The model has an R-squared value of 0.950. Finally, blood protein content was changed to simulate diseased conditions and blood viscosity was measured using the device and estimated using the model constructed in this work. Simulated diseased conditions were clearly detected when comparing estimated viscosity values using the model and the measured values using the device, proving the applicability of the setup in the detection of rheological anomalies and in disease diagnosis.


Microfluidic device Blood viscosity Rheological model Point of care diagnostics Blood viscometer 



This work is supported in part by the Scientific Research Support Fund (SRSF) at the Hashemite Kingdom of Jordan and the Deanship of Research at the Jordan University of Science and Technology.

Compliance with ethical standards

Conflict of interest

The authors have declared no conflict of interest.

Supplementary material

10544_2019_426_MOESM1_ESM.docx (101 kb)
ESM 1 (DOCX 100 kb)


  1. O.K. Baskurt, H.J. Meiselman, Semin. Thromb. Hemost. 29, 435 (2003)CrossRefGoogle Scholar
  2. M.O. Bernabeu, R.W. Nash, D. Groen, H.B. Carver, J. Hetherington, T. Krüger, P.V. Coveney, Interface Focus 3, 20120094 (2013)CrossRefGoogle Scholar
  3. M.T. Blom, E. Chmela, F.H.J. van der Heyden, R.E. Oosterbroek, R. Tijssen, M. Elwenspoek, A. van den Berg, J. Microelectromech. Syst. 14, 70 (2005)CrossRefGoogle Scholar
  4. T. Bodnár, A. Sequeira, M. Prosi, Appl. Math. Comput. 217, 5055 (2011)MathSciNetGoogle Scholar
  5. J. T. Busher, in Clin. Methods Hist. Phys. Lab. Exam., edited by H. K. Walker, W. D. Hall, and J. W. Hurst, 3rd ed. (Butterworths, Boston, 1990)Google Scholar
  6. Y.I. Cho, K.R. Kensey, Biorheology 28, 241 (1991)CrossRefGoogle Scholar
  7. B.M. Cooke, J. Stuart, J. Clin. Pathol. 41, 1213 (1988)CrossRefGoogle Scholar
  8. S. De Gruttola, K. Boomsma, D. Poulikakos, Artif. Organs 29, 949 (2005)CrossRefGoogle Scholar
  9. N. Doy, G. McHale, M.I. Newton, C. Hardacre, R. Ge, J.M. Macinnes, D. Kuvshinov, R.W. Allen, Biomicrofluidics 4, 14107 (2010)CrossRefGoogle Scholar
  10. D.M. Eckmann, S. Bowers, M. Stecker, A.T. Cheung, Anesth. Analg. 91, 539 (2000)CrossRefGoogle Scholar
  11. D.A. Fedosov, W. Pan, B. Caswell, G. Gompper, G.E. Karniadakis, Proc. Natl. Acad. Sci. 108, 11772 (2011)CrossRefGoogle Scholar
  12. P.B. Gauthier, T. Sawa, A.J. Kenyon, Arch. Biochem. Biophys. 130, 690 (1969)CrossRefGoogle Scholar
  13. P. Guillot, P. Panizza, J.-B. Salmon, M. Joanicot, A. Colin, C.-H. Bruneau, T. Colin, Langmuir ACS J. Surf. Colloids 22, 6438 (2006)CrossRefGoogle Scholar
  14. Z. Han, B. Zheng, J. Micromechanics Microengineering 19, 115005 (2009)CrossRefGoogle Scholar
  15. Z. Han, X. Tang, B. Zheng, J. Micromechanics Microengineering 17, 1828 (2007)CrossRefGoogle Scholar
  16. M. Hitosugi, M. Niwa, A. Takatsu, Thromb. Res. 104, 371 (2001)CrossRefGoogle Scholar
  17. Y.J. Kang, S.Y. Yoon, K.-H. Lee, S. Yang, Artif. Organs 34, 944 (2010)CrossRefGoogle Scholar
  18. Y.J. Kang, E. Yeom, S.-J. Lee, Biomicrofluidics 7, 54111 (2013)CrossRefGoogle Scholar
  19. W.R. Keatinge, S.R. Coleshaw, F. Cotter, M. Mattock, M. Murphy, R. Chelliah, Br. Med. J. Clin. Res. Ed 289, 1405 (1984)CrossRefGoogle Scholar
  20. S. Keen, A. Yao, J. Leach, R.D. Leonardo, C. Saunter, G. Love, J. Cooper, M. Padgett, Lab Chip 9, 2059 (2009)CrossRefGoogle Scholar
  21. B.J. Kim, S.Y. Lee, S. Jee, A. Atajanov, S. Yang, Sensors 17 (2017)CrossRefGoogle Scholar
  22. H.C. Kwaan, Clin. Hemorheol. Microcirc. 44, 167 (2010)Google Scholar
  23. J. Lee, A. Tripathi, Anal. Chem. 77, 7137 (2005)CrossRefGoogle Scholar
  24. C.S. Lo, P. D. Prewett, G. J. Davies, C. J Anthony, and K Vanner, World Congr. Eng. 2007 II, 1379 (2007)Google Scholar
  25. G.D. Lowe, M.M. Drummond, A.R. Lorimer, I. Hutton, C.D. Forbes, C.R. Prentice, J.C. Barbenel, Br. Med. J. 280, 673 (1980)CrossRefGoogle Scholar
  26. G.D. Lowe, F.G. Fowkes, J. Dawes, P.T. Donnan, S.E. Lennie, E. Housley, Circulation 87, 1915 (1993)CrossRefGoogle Scholar
  27. G.D. Lowe, A.J. Lee, A. Rumley, J.F. Price, F.G. Fowkes, Br. J. Haematol. 96, 168 (1997)CrossRefGoogle Scholar
  28. G.N. Marinakis, J.C. Barbenel, S.G. Tsangaris, Proc. Inst. Mech. Eng. [H] (2016)Google Scholar
  29. L. Pan, P.E. Arratia, Microfluid. Nanofluidics 14, 885 (2013)CrossRefGoogle Scholar
  30. M.-S. Park, B.-C. Kim, I.-K. Kim, S.-H. Lee, S.-M. Choi, M.-K. Kim, S.-S. Lee, K.-H. Cho, J. Korean Med. Sci. 20, 699 (2005)CrossRefGoogle Scholar
  31. A.R. Pries, D. Neuhaus, P. Gaehtgens, Am. J. Phys. 263, H1770 (1992)Google Scholar
  32. D. Qin, Y. Xia, G.M. Whitesides, Nat. Protoc. 5, 491 (2010)CrossRefGoogle Scholar
  33. J. Ralf, H. Jürgen, U. Hans, S. Helmut, S. Rainer, K. Ekkehart, A. Gerd, Arterioscler. Thromb. Vasc. Biol. 18, 870 (1998)CrossRefGoogle Scholar
  34. D. Rubenstein, W. Yin, and M. D. Frame, Biofluid Mechanics: An Introduction to Fluid Mechanics, Macrocirculation, and Microcirculation (Academic Press, 2015)Google Scholar
  35. H.A. Ruggiero, H. Castellanos, L.F. Caprissi, E.S. Caprissi, Clin. Cardiol. 5, 215 (1982)CrossRefGoogle Scholar
  36. Sahu, Nageswari, Banerjee, Puniyani, Clin. Hemorheol. Microcirc. 19, 17 (1998)Google Scholar
  37. N. Srivastava, M.A. Burns, Anal. Chem. 78, 1690 (2006a)CrossRefGoogle Scholar
  38. N. Srivastava, M.A. Burns, Lab Chip 6, 744 (2006b)CrossRefGoogle Scholar
  39. N. Srivastava, R.D. Davenport, M.A. Burns, Anal. Chem. 77, 383 (2005)CrossRefGoogle Scholar
  40. F. Yilmaz, M. Gundoğdu, Korea-Aust. Rheol. J. 20 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biomedical Engineering, Faculty of EngineeringJordan University of Science and TechnologyIrbidJordan
  2. 2.Department of Mechanical Engineering, Faculty of EngineeringJordan University of Science and TechnologyIrbidJordan
  3. 3.Department of Civil and Environmental Engineering, School of Natural Resources Engineering and ManagementGerman Jordanian UniversityAmmanJordan
  4. 4.Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace EngineeringUniversity of FloridaGainesvilleUSA
  5. 5.J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of FloridaGainesvilleUSA
  6. 6.Department of ChemistryUniversity of FloridaGainesvilleUSA

Personalised recommendations