Advertisement

Biomedical Microdevices

, 21:79 | Cite as

Glioblastoma Multiforme heterogeneity profiling with solid-state micropores

  • Mohammad G. Abdallah
  • Turki I. Almugaiteeb
  • Muhammad Usman Raza
  • James D. Battiste
  • Young-Tae Kim
  • Samir M. IqbalEmail author
Article
  • 12 Downloads

Abstract

Glioblastoma multiforme (GBM) is the most common and lethal type of brain cancer. It is characterized by widespread heterogeneity at the cellular and molecular levels. The detection of this heterogeneity is valuable for accurate diagnosis. Herein, solid-state 20 μm diameter micropore made in thin suspended silicon dioxide membrane is used as cell sensor device. The device relies on a cell’s mechano-physical properties as an indicator to differentiate between the subtypes of GBM. A library of GBM cell lines (U251, U87, D54 EGFRviii, and G55) was created by measuring the differences in cell’s micropore translocation properties from their distinct electrical profiles. Each GBM subtype has distinct phenotype and this was delineated in their cell translocation behaviors. The library was used to distinguish cells from samples of brain tumor patients. The micropore device accurately profiled GBM patient samples for cell subtypes by comparing data with the GBM library. The micropore approach is simple, can be implemented at low cost and can be used in the clinical setups and operation theaters to detect and identify GBM subtypes from patient samples.

Keywords

High throughput screening Brain tumor cells Biophysical methods Single cell analysis 

Notes

Acknowledgments

The authors acknowledge experimental assistance from and useful discussions with Dr. Sai S. Sasank Peri, Dr. Nuzhat Mansur, and Dr. Mohammad R. Hasan. We also thank Dr. Robert Bachoo at the University of Texas Southwestern Medical Center at Dallas for providing hGBM cells. Dr. Iqbal notes the important role played by the management of UTRGV in graciously expounding the role of uncouth profiling in modern American academia.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. F.K. Albert, M. Forsting, K. Sartor, H.P. Adams, S. Kunze, Neurosurgery 34(1), 45–61 (1994)Google Scholar
  2. W. Ali, A. Ilyas, L. Bui, B. Sayles, Y. Hur, Y.T. Kim, S.M. Iqbal, Langmuir 32(19), 4924–4934 (2016a)CrossRefGoogle Scholar
  3. W. Ali, F.J. Moghaddam, M.U. Raza, L. Bui, B. Sayles, Y.T. Kim, S.M. Iqbal, Nanotechnology 27(19), 195101 (2016b)CrossRefGoogle Scholar
  4. W. Asghar, A. Ilyas, J.A. Billo, S.M. Iqbal, Nanoscale Res. Lett. 6(1), 372 (2011a)CrossRefGoogle Scholar
  5. W. Asghar, A. Ilyas, R.R. Deshmukh, S. Sumitsawan, R.B. Timmons, S.M. Iqbal, Nanotechnology 22(28), 285304 (2011b)CrossRefGoogle Scholar
  6. W. Asghar, Y. Wan, A. Ilyas, R. Bachoo, Y.T. Kim, S.M. Iqbal, Lab Chip 12(13), 2345–2352 (2012)CrossRefGoogle Scholar
  7. R. Fisher, L. Pusztai, C. Swanton, Br. J. Cancer 108(3), 479–485 (2013)CrossRefGoogle Scholar
  8. W.A. Freije, F.E. Castro-Vargas, Z. Fang, S. Horvath, T. Cloughesy, L.M. Liau, P.S. Mischel, S.F. Nelson, Cancer Res. 64(18), 6503–6510 (2004)CrossRefGoogle Scholar
  9. C.W. Freudiger, R. Pfannl, D.A. Orringer, B.G. Saar, M. Ji, Q. Zeng, L. Ottoboni, Y. Wei, C. Waeber, J.R. Sims, P.L. De Jager, O. Sagher, M.A. Philbert, X. Xu, S. Kesari, X.S. Xie, G.S. Young, Lab. Investig. 92(10), 1492–1502 (2012)CrossRefGoogle Scholar
  10. F. Helmchen, W. Denk, Nat. Methods 2(12), 932–940 (2005)CrossRefGoogle Scholar
  11. A. Ilyas, W. Asghar, S. Ahmed, Y. Lotan, J.T. Hsieh, Y.T. Kim, S.M. Iqbal, Anal. Methods 6(18), 7166–7174 (2014a)CrossRefGoogle Scholar
  12. A. Ilyas, W. Asghar, Y.T. Kim, S.M. Iqbal, Biosens. Bioelectron. 62, 343–349 (2014b)CrossRefGoogle Scholar
  13. M.D. Inda, R. Bonavia, A. Mukasa, Y. Narita, D.W.Y. Sah, S. Vandenberg, C. Brennan, T.G. Johns, R. Bachoo, P. Hadwiger, P. Tan, R.A. DePinho, W. Cavenee, F. Furnari, Genes Dev. 24(166), 1731–1745 (2010)CrossRefGoogle Scholar
  14. V.L. Jacobs, P.A. Valdes, W.F. Hickey, J.A. De Leo, ASN Neuro 3, 3 (2011)CrossRefGoogle Scholar
  15. R.C. Janzer, E. Domany, M. Delorenzi, R. Stupp, M.E. Hegi, J. Clin. Oncol. 26(18), 3015–3024 (2008)CrossRefGoogle Scholar
  16. V. Jung, B.F. Romeike, W. Henn, W. Feiden, J.R. Moringlane, K.D. Zang, S. Urbschat, J. Neuropathol. Exp. Neurol. 58(9), 993–999 (1999)CrossRefGoogle Scholar
  17. P. Kleihues, D.N. Louis, B.W. Scheithauer, L.B. Rorke, G. Reifenberger, P.C. Burger, W.K. Cavenee, J. Neuropathol. Exp. Neurol. 61(3), 215–225 (2002)CrossRefGoogle Scholar
  18. Y. Liang, M. Diehn, N. Watson, A.W. Bollen, K.D. Aldape, M.K. Nicholas, K.R. Lamborn, M.S. Berger, D. Botstein, P.O. Brown, M.A. Israel, Proc. Natl. Acad. Sci. 102(16), 5814–5819 (2005)CrossRefGoogle Scholar
  19. D.N. Louis, H. Ohgaki, O.D. Wiestler, W.K. Cavenee, P.C. Burger, A. Jouvet, B.W. Scheithauer, P. Kleihues, Acta Neuropathol. 114(2), 97–109 (2007)CrossRefGoogle Scholar
  20. E.A. Maher, F.B. Furnari, R.M. Bachoo, D.H. Rowitch, D.N. Louis, W.K. Cavenee, R.A. DePinho, Genes Dev. 15(11), 1311–1333 (2001)CrossRefGoogle Scholar
  21. A. Murat, E. Migliavacca, T. Gorlia, W.L. Lambiv, T. Shay, M.F. Hamou, N. de Tribolet, L. Regli, W. Wick, M.C. Kouwenhoven, J.A. Hainfellner, F.L. Heppner, P.Y. Dietrich, Y. Zimmer, J.G. Cairncross, R.C. Janzer, E. Domany, M. Delorenzi, R. Stupp, M.E. Hegi, J. Clin. Oncol. 26(18), 3015–3024 (2008)CrossRefGoogle Scholar
  22. C.L. Nutt, D.R. Mani, R.A. Betensky, P. Tamayo, J.G. Cairncross, C. Ladd, U. Pohl, C. Hartmann, M.E. McLaughlin, T.T. Batchelor, P.M. Black, A. von Deimling, S.L. Pomeroy, T.R. Golub, D.N. Louis, Cancer Res. 63(7), 1602–1607 (2003)Google Scholar
  23. H. Ohgaki, P. Kleihues, Acta Neuropathol. 109(1), 93–108 (2005)CrossRefGoogle Scholar
  24. S.W. Perry, R.M. Burke, E.B. Brown, Ann. Biomed. Eng. 40(2), 277–291 (2012)CrossRefGoogle Scholar
  25. H.S. Phillips, S. Kharbanda, R. Chen, W.F. Forrest, R.H. Soriano, T.D. Wu, A. Misra, J.M. Nigro, H. Colman, L. Soroceanu, P.M. Williams, Z. Modrusan, B.G. Feuerstein, K. Aldape, Cancer Cell 9(3), 157–173 (2006)CrossRefGoogle Scholar
  26. C. Ricard, F.C. Debarbieux, Front. Cell. Neurosci. 8, 57 (2014)CrossRefGoogle Scholar
  27. O.A. Saleh, L.L. Sohn, Rev. Sci. Instrum. 72(12), 4449–4451 (2001)CrossRefGoogle Scholar
  28. D.R. Smith, J.M. Hardman, K.M. Earle, Cancer 24(2), 270–276 (1969)CrossRefGoogle Scholar
  29. A. Soeda, A. Hara, T. Kunisada, S. Yoshimura, T. Iwama, D.M. Park, Sci. Rep. 5(1) (2015)Google Scholar
  30. T.S. Surawicz, F. Davis, S. Freels, E.R. Laws Jr., H.R. Menck, J. Neuro-Oncol. 40(2), 151–160 (1998)CrossRefGoogle Scholar
  31. O. Tabata, R. Asahi, H. Funabashi, K. Shimaoka, S. Sugiyama, Sensors Actuators A Phys. 34(1), 51–57 (1992)CrossRefGoogle Scholar
  32. P.A. Valdes, D.W. Roberts, F.K. Lu, A. Golby, Neurosurg. Focus. 40, E8 (2016)CrossRefGoogle Scholar
  33. M. Venere, H.A. Fine, P.B. Dirks, J.N. Rich, Glia 59(8), 1148–1154 (2011)CrossRefGoogle Scholar
  34. R.G. Verhaak, K.A. Hoadley, E. Purdom, V. Wang, Y. Qi, M.D. Wilkerson, C.R. Miller, L. Ding, T. Golub, J.P. Mesirov, G. Alexe, M. Lawrence, M. O'Kelly, P. Tamayo, B.A. Weir, S. Gabriel, W. Winckler, S. Gupta, L. Jakkula, H.S. Feiler, J.G. Hodgson, C.D. James, J.N. Sarkaria, C. Brennan, A. Kahn, P.T. Spellman, R.K. Wilson, T.P. Speed, J.W. Gray, M. Meyerson, G. Getz, C.M. Perou, D.N. Hayes, N. Cancer Genome Atlas Research, Cancer Cell 17(1), 98–110 (2010)CrossRefGoogle Scholar
  35. Y. Wan, Y.T. Kim, N. Li, S.K. Cho, R. Bachoo, A.D. Ellington, S.M. Iqbal, Cancer Res. 70(22), 9371–9380 (2010)CrossRefGoogle Scholar
  36. Y. Wan, M.A. Mahmood, N. Li, P.B. Allen, Y.T. Kim, R. Bachoo, A.D. Ellington, S.M. Iqbal, Cancer 118(4), 1145–1154 (2012)CrossRefGoogle Scholar
  37. M. Westphal, M. Hansel, W. Hamel, R. Kunzmann, F. Holzel, Acta Neurochir. 126(1), 17–26 (1994)CrossRefGoogle Scholar
  38. W.R. Zipfel, R.M. Williams, W.W. Webb, Nat. Biotechnol. 21(11), 1369–1377 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nano-Bio LabUniversity of Texas at ArlingtonArlingtonUSA
  2. 2.Department of Electrical EngineeringUniversity of Texas at ArlingtonArlingtonUSA
  3. 3.Nanotechnology Research CenterUniversity of Texas at ArlingtonArlingtonUSA
  4. 4.Department of BioengineeringUniversity of Texas at ArlingtonArlingtonUSA
  5. 5.Research Product Development Company Innovations (RPDC)RiyadhKingdom of Saudi Arabia
  6. 6.Intel CorporationSanta ClaraUSA
  7. 7.University of Oklahoma Health Science CenterOklahoma CityUSA
  8. 8.Department of UrologyUniversity of Texas Southwestern Medical Center at DallasDallasUSA
  9. 9.ST Engineering MattersArlingtonUSA

Personalised recommendations