Biomedical Microdevices

, 21:53 | Cite as

Highly aligned and geometrically structured poly(glycerol sebacate)-polyethylene oxide composite fiber matrices towards bioscaffolding applications

  • Daniel O’Brien
  • Andrew Hankins
  • Nady Golestaneh
  • Makarand ParanjapeEmail author


The biocompatible and biodegradable polymer poly(glycerol sebacate), or PGS, is a rubber-like material that finds use in several biomedical applications. PGS is often cast into a mold to form desired structures; alternatively, blending PGS with other reinforcing polymers produces viscous solutions that can be spun into non-woven fibrous scaffolds. For tissue scaffolding applications, ordered fibrous matrices are advantageous and have been shown to promote cell orientation and proliferation by contact guidance, providing topographical cues for the seeded cells. The development of techniques for easily producing aligned fibrous matrices is therefore a priority. PGS nanofibers have been fabricated successfully using electrospinning techniques. For producing PGS microfibers, we introduce the electro-less STRAND (Substrate Translation and Rotation for Aligned Nanofiber Deposition) process as an alternative to electrospinning. STRAND provides superior control of fiber properties including diameter, alignment, spacing, and therefore deposition density by mechanically drawing polymer fibers from solution. The goal in using this method is the simple production of aligned PGS fiber matrices for retinal tissue scaffolding.


Biocompatible polymer Biomedical Tissue engineering Aligned scaffold Poly(glycerol sebacate) 



The authors would like to thank Leon Der and Jasper Nijdam (Georgetown University) for their input and technical assistance in the project. Daniel O’Brien would like to thank the NSF-REU program for funding through Grant DMR-1358978.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. S. Agarwal, J.H. Wendorff, A. Greiner, Use of electrospinning technique for biomedical applications. Polymer 49(26), 5603–5621 (2008)CrossRefGoogle Scholar
  2. A.S. Badami, M.R. Kreke, M.S. Thompson, J.S. Riffle, A.S. Goldstein, Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials 27(4), 596–606 (2006)CrossRefGoogle Scholar
  3. M.R. Badrossamay, H.A. McIlwee, J.A. Goss, K.K. Parker, Nanofiber assembly by rotary jet-spinning. Nano Lett. 10(6), 2257–2261 (2010)CrossRefGoogle Scholar
  4. C.J. Bettinger, B. Orrick, A. Misra, R. Langer, J.T. Borenstein, Microfabrication of poly (glycerol-sebacate) for contact guidance applications. Biomaterials 27(12), 2558–2565 (2006)CrossRefGoogle Scholar
  5. N. Bhardwaj, S.C. Kundu, Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 28(3), 325–347 (2010)CrossRefGoogle Scholar
  6. M.H. Bolin, K. Svennersten, X. Wang, I.S. Chronakis, A. Richter-Dahlfors, E.W.H. Jager, M. Berggren, Nano-fiber scaffold electrodes based on PEDOT for cell stimulation. Sensor. Actuat. B-Chem. 142(2), 451–456 (2009)CrossRefGoogle Scholar
  7. J. Doshi, D.H. Reneker, Electrospinning process and applications of electrospun fibers. J. Electrost. 35(2–3), 151–160 (1995)CrossRefGoogle Scholar
  8. J. Gao, A.E. Ensley, R.M. Nerem, Y. Wang, Poly(glycerol sebacate) supports the proliferation and phenotypic protein expression of primary baboon vascular cells. J. Biomed. Mater. Res. A 83A(4), 1070–1075 (2007)CrossRefGoogle Scholar
  9. N. Golestaneh, Y. Chu, Y. Xiao, G.L. Stoleru, A.C. Theos, Dysfunctional autophagy in RPE, a contributing factor in age-related macular degeneration. Cell Death Dis. 8, e2537 (2017)CrossRefGoogle Scholar
  10. B. Guo, P.X. Ma, Synthetic biodegradable functional polymers for tissue engineering: A brief review. Sci. China Chem. 57(4), 490–500 (2014)CrossRefGoogle Scholar
  11. A. Hasan, A. Memic, N. Annabi, M. Hossain, A. Paul, M.R. Dokmeci, F. Dehghani, A. Khademhosseini, Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater. 10(1), 11–25 (2014)CrossRefGoogle Scholar
  12. J. Hu, D. Kai, H. Ye, L. Tian, X. Ding, S. Ramakrishna, X.H. Loh, Electrospinning of poly(glycerol sebacate)-based nanofibers for nerve tissue engineering. Mater. Sci. Eng. C-Mater. 70(2), 1089–1094 (2017)CrossRefGoogle Scholar
  13. O. Karatay, M. Dogan, T. Uyar, D. Cokeliler, I.C. Kocum, An alternative electrospinning approach with varying electric field for 2-D-aligned nanofibers. IEEE T. Nanotechnol. 13(1), 101–108 (2014)CrossRefGoogle Scholar
  14. E.D.F. Ker, A.S. Nain, L.E. Weiss, J. Wang, J. Suhan, C.H. Amon, P.G. Campbell, Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment. Biomaterials 32(32), 8097–8107 (2011)CrossRefGoogle Scholar
  15. M.J. Kim, M.Y. Hwang, J. Kim, D.J. Chung, Biodegradable and elastomeric poly(glycerol sebacate) as a coating material for ninitol bare stent. Biomed. Res. Int. 2014, 1–7 (2014)Google Scholar
  16. C.C. Lau, M.K. Bayazit, J.C. Knowles, J. Tang, Tailoring degree of esterification and branching of poly(glycerol sebacate) by energy efficient microwave irradiation. Polym. Chem.-UK 8, 3979–3947 (2017)CrossRefGoogle Scholar
  17. Y. Li, W.D. Cook, C. Moorhoff, W. Huang, Q. Chen, Synthesis, characterization and properties of biocompatible poly(glycerol sebacate) pre-polymer and gel. Polym. Int. 62(4), 534–547 (2013)CrossRefGoogle Scholar
  18. X. Li, A.T. Hong, N. Naskar, H. Chung, Criteria for quick and consistent synthesis of poly(glycerol sebacate) for tailored mechanical properties. Biomacromolecules 16(5), 1525–1533 (2015)CrossRefGoogle Scholar
  19. D. Liang, B.S. Hsiao, B. Chu, Functional electrospun nanofibrous scaffolds for biomedical applications. Adv. Drug Deliv. Rev. 59(14), 1392–1412 (2007)CrossRefGoogle Scholar
  20. Y. Lin, Y. Chien, J. Chuang, C. Chang, Y. Yang, Y. Lai, W. Lo, K. Chien, T. Huo, C. Wang, Development of a graphene oxide-incorporated polydimethylsiloxane membrane with hexagonal micropillars. Int. J. Mol. Sci. 19(9), 2517 (2018)CrossRefGoogle Scholar
  21. C. Liu, P. Hsu, H. Lee, M. Ye, G. Zheng, N. Liu, W. Li, Y. Cui, Transparent air filter for high-efficiency PM2.5 capture. Nat. Commun. 6(6205) (2015)Google Scholar
  22. N. Masoumi, K.L. Johnson, M.C. Howell, G.C. Engelmayr Jr., Valvular interstitial cell seeded poly(glycerol sebacate) scaffolds: Toward a biomimetic in vitro model for heart valve tissue engineering. Acta Biomater. 9(4), 5974–5988 (2013)CrossRefGoogle Scholar
  23. N. Masoumi, B. Larson, N. Annabi, M. Kharaziha, B. Zamanian, K. Shapero, A.T. Cubberley, G. Camci-Unal, K.B. Manning, J.E. Mayer Jr., A. Khademhosseini, Electrospun PGS:PCL microfibers align human valvular interstitial cells and provide tunable scaffold anisotropy. Adv. Healthc. Mater. 3(6), 929–939 (2014)CrossRefGoogle Scholar
  24. S.R. Montezuma, J. Loewenstein, C. Scholz, J.F. Rizzo III, Biocompatibility of materials implanted into the subretinal space of Yucatan pigs. Invest. Ophthalmol. Vis. Sci. 47(8), 3514–3522 (2006)CrossRefGoogle Scholar
  25. A.S. Nain, J.A. Phillippi, M. Sitti, J. Mackrell, P.G. Campbell, C. Amon, Control of cell behavior by aligned micro/nanofibrous biomaterial scaffolds fabricated by spinneret-based tunable engineered parameters (STEP) technique. Small 4(8), 1153–1159 (2004)CrossRefGoogle Scholar
  26. A.S. Nain, M. Sitti, A. Jacobson, T. Kowalewski, C. Amon, Dry spinning based spinneret based tunable engineered parameters (STEP) technique for controlled and aligned deposition of polymeric nanofibers. Macromol. Rapid Commun. 30(16), 1406–1412 (2009)CrossRefGoogle Scholar
  27. C.L. Nijst, J.P. Bruggeman, J.M. Karp, L. Ferreira, A. Zumbuehl, C.J. Bettinger, R. Langer, Synthesis and characterization of photocurable elastomers from poly(glycerol-co-sebacate). Biomacromolecules 8(10), 3067–3073 (2007)CrossRefGoogle Scholar
  28. S.H. Park, D. Yang, Fabrication of aligned electrospun nanofibers by inclined gap method. J. Appl. Polym. Sci. 120(3), 1800–1807 (2011)CrossRefGoogle Scholar
  29. C.D. Pritchard, K.M. Arnér, R.A. Neal, W.L. Neeley, P. Bojo, E. Bachelder, J. Holz, N. Watson, E.A. Botchwey, R.S. Langer, F.K. Ghosh, The use of surface modified poly(glycerol-co-sebacic acid) in retinal transplantation. Biomaterials 31(8), 2153–2162 (2010)CrossRefGoogle Scholar
  30. M. Putti, M. Simonet, R. Solberg, G.W.M. Peters, Electrospinning poly(ε-caprolactone) under controlled environmental conditions: Influence on fiber morphology and orientation. Polymer 63, 189–195 (2015)CrossRefGoogle Scholar
  31. S. Sant, C.M. Hwang, S. Lee, A. Khademhosseini, Hybrid PGS-PCL microfibrous scaffolds with improved mechanical and biological properties. Acta Biomater. 5(4), 283–291 (2011)Google Scholar
  32. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012)CrossRefGoogle Scholar
  33. T.J. Sill, H.A. von Recum, Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 29(13), 1989–2006 (2008)CrossRefGoogle Scholar
  34. O. Strauss, The retinal pigment epithelium in visual function. Physiol. Rev. 85(3), 845–881 (2005)CrossRefGoogle Scholar
  35. D. Sun, C. Chang, S. Li, L. Lin, Near-field electrospinning. Nano Lett. 6(4), 839–842 (2006)CrossRefGoogle Scholar
  36. C.A. Sundback, J.Y. Shyu, Y. Wang, W.C. Faquin, R.S. Langer, J.P. Vacanti, T.A. Hadlock, Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials 26(27), 5454–5464 (2005)CrossRefGoogle Scholar
  37. A.I. Texiera, G.A. McKie, J.D. Foley, P.J. Bertics, P.F. Nealey, C.J. Murphy, The effect of environmental factors on the response of human corneal epithelial cells to nanoscale substrate topography. Biomaterials 27(21), 3945–3954 (2006)CrossRefGoogle Scholar
  38. P.S. Thayer, S.S. Verbridge, L.A. Dahlgren, S. Kakar, S.A. Guelcher, A.S. Goldstein, Fiber/collagen composites for ligament tissue engineering: Influence of elastic moduli of sparse aligned fibers on mesenchymal stem cells. J. Biomed. Res. A 104(8), 1894–1901 (2016)Google Scholar
  39. Y. Wang, G.A. Ameer, B.J. Sheppard, R. Langer, A tough biodegradable elastomer. Nat. Biotechnol. 20, 602–606 (2002)CrossRefGoogle Scholar
  40. Y. Wang, Y.M. Kim, R. Langer, In vivo degradation characteristics of poly(glycerol sebacate). J. Biomed. Res. A 66(1), 192–197 (2003)CrossRefGoogle Scholar
  41. C.Y. Xu, R. Inai, M. Kotaki, S. Ramakrishna, Aligned biodegradable nanofibrous structure: A potential scaffold for blood vessel engineering. Biomaterials 25(5), 877–886 (2004)CrossRefGoogle Scholar
  42. F. Xu, L. Li, X. Cui, Fabrication of aligned side-by-side TiO2/SnO2 nanofibers via dual-opposite-spinneret electrospinning. J. Nanomater. 2012, 1–5 (2012)Google Scholar
  43. L. Xu, X. Xu, H. Chen, X. Li, Ocular biocompatibility and tolerance study of biodegradable polymeric micelles in the rabbit eye. Colloid Surface B 112, 30–34 (2013)CrossRefGoogle Scholar
  44. F. Yang, R. Murugan, S. Wang, S. Ramakrishna, Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26(15), 2603–2610 (2005)CrossRefGoogle Scholar
  45. X. Zhang, Y. Lu, Centrifugal spinning: An alternative approach to fabricate nanofibers at high speed and low cost. Polym. Rev. 54(4), 677–701 (2015)CrossRefGoogle Scholar
  46. G. Zhao, X. Zhang, T.J. Lu, F. Xu, Recent advances in electrospun nanofibrous scaffolds for cardiac tissue engineering. Adv. Funct. Mater. 25(36), 5726–5738 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsGeorgetown UniversityWashingtonUSA
  2. 2.Department of Opthalmology and NeurologyGeorgetown University Medical CenterWashingtonUSA

Personalised recommendations