Advertisement

A tissue chamber chip for assessing nanoparticle mobility in the extravascular space

  • Valeria Lusi
  • Thomas L. Moore
  • Federica Laurino
  • Alessandro Coclite
  • Rui Perreira
  • Miguel Ferreira
  • Ilaria Rizzuti
  • Roberto Palomba
  • Paolo Zunino
  • Marti Duocastella
  • Shoshy Mizrahy
  • Dan Peer
  • Paolo DecuzziEmail author
Article
  • 93 Downloads
Part of the following topical collections:
  1. Biomedical Micro-Nanotechnologies toward Translation

Abstract

Although a plethora of nanoparticle configurations have been proposed over the past 10 years, the uniform and deep penetration of systemically injected nanomedicines into the diseased tissue stays as a major biological barrier. Here, a ‘Tissue Chamber’ chip is designed and fabricated to study the extravascular transport of small molecules and nanoparticles. The chamber comprises a collagen slab, deposited within a PDMS mold, and an 800 μm channel for the injection of the working solution. Through fluorescent microscopy, the dynamics of molecules and nanoparticles was estimated within the gel, under different operating conditions. Diffusion coefficients were derived from the analysis of the particle mean square displacements (MSD). For validating the experimental apparatus and the protocol for data analysis, the diffusion D of FITC-Dextran molecules of 4, 40 and 250 kDa was first quantified. As expected, D reduces with the molecular weight of the dextran molecules. The MSD-derived diffusion coefficients were in good agreement with values derived via fluorescence recovery after photobleaching (FRAP), an alternative technique that solely applies to small molecules. Then, the transport of six nanoparticles with similar hydrodynamic diameters (~ 200 nm) and different surface chemistries was quantified. Surface PEGylation was confirmed to favor the diffusion of nanoparticles within the collagen slab, whereas the surface decoration with hyaluronic acid (HA) chains reduced nanoparticle mobility in a way proportional to the HA molecular weight. To assess further the generality of the proposed approach, the diffusion of the six nanoparticles was also tested in freshly excised brain tissue slices. In these ex vivo experiments, the diffusion coefficients were 5-orders of magnitude smaller than for the Tissue Chamber chip. This was mostly ascribed to the lack of a cellular component in the chip. However, the trends documented for PEGylated and HA-coated nanoparticles in vitro were also confirmed ex vivo. This work demonstrates that the Tissue Chamber chip can be employed to effectively and efficiently test the extravascular transport of nanomedicines while minimizing the use of animals.

Keywords

Nanoparticle transport Nanomedicine Tissue chamber 

Notes

Acknowledgments

All the authors have read and approved the manuscript. This project was partially supported by the European Research Council, under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 616695, by the Italian Association for Cancer Research (AIRC) under the individual investigator grant no. 17664, and by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 754490.

Supplementary material

10544_2019_398_MOESM1_ESM.m (3 kb)
ESM 1 (M 2 kb)

References

  1. B. Annabi, S. Thibeault, R. Moumdjian, R. Béliveau, J. Biol. Chem. 279, 21888 (2004)CrossRefGoogle Scholar
  2. A.C. Anselmo, J.B. Gilbert, S. Kumar, V. Gupta, R.E. Cohen, M.F. Rubner, S. Mitragotri, J. Control. Release 199, 29 (2015)CrossRefGoogle Scholar
  3. J.K. Armstrong, R.B. Wenby, H.J. Meiselman, T.C. Fisher, Biophys. J. 87, 4259 (2004)CrossRefGoogle Scholar
  4. A.G. Arranja, V. Pathak, T. Lammers, Y. Shi, Pharmacol. Res. 115, 87 (2017)CrossRefGoogle Scholar
  5. E. Blanco, T. Sangai, S. Wu, A. Hsiao, G.U. Ruiz-Esparza, C.A. Gonzalez-Delgado, F.E. Cara, S. Granados-Principal, K.W. Evans, A. Akcakanat, Y. Wang, K.A. Do, F. Meric-Bernstam, M. Ferrari, Mol. Ther. 22, 1310 (2014)CrossRefGoogle Scholar
  6. E. Blanco, H. Shen, M. Ferrari, Nat. Biotechnol. 33, 941 (2015)CrossRefGoogle Scholar
  7. J.S. Brenner, D.C. Pan, J.W. Myerson, O.A. Marcos-Contreras, C.H. Villa, P. Patel, H. Hekierski, S. Chatterjee, J.-Q. Tao, H. Parhiz, K. Bhamidipati, T.G. Uhler, E.D. Hood, R.Y. Kiseleva, V.S. Shuvaev, T. Shuvaeva, M. Khoshnejad, I. Johnston, J.V. Gregory, J. Lahann, T. Wang, E. Cantu, W.M. Armstead, S. Mitragotri, V. Muzykantov, Nat. Commun. 9, 2684 (2018)CrossRefGoogle Scholar
  8. H. Cabral, Y. Matsumoto, K. Mizuno, Q. Chen, M. Murakami, M. Kimura, Y. Tereda, M.R. Kano, K. Miyazono, M. Uesaka, N. Nishiyama, K. Kataoka, Nat. Nanotechnol. 6, 815 (2011)CrossRefGoogle Scholar
  9. M.-R. Choi, R. Bardhan, K.J. Stanton-Maxey, S. Badve, H. Nakshatri, K.M. Stantz, N. Cao, N.J. Halas, S.E. Clare, Cancer Nanotechnol. 3, 47 (2012)CrossRefGoogle Scholar
  10. Y. Cu, W.M. Saltzman, Mol. Pharm. 6, 173 (2009)CrossRefGoogle Scholar
  11. J.G. Dancy, A.S. Wadajkar, C.S. Schneider, J.R.H. Mauban, O.G. Goloubeva, G.F. Woodworth, J.A. Winkles, A.J. Kim, J. Control. Release 238, 139 (2016)CrossRefGoogle Scholar
  12. A. Erikson, H.N. Andersen, S.N. Naess, P. Sikorski, C.d.L. Davies, Biopolymers 89, 135 (2008)CrossRefGoogle Scholar
  13. S. Essa, J.M. Rabanel, P. Hildgen, Int. J. Pharm. 411, 178 (2011)CrossRefGoogle Scholar
  14. M. Ferrari, Nat. Rev. Cancer 5, 161 (2005)CrossRefGoogle Scholar
  15. R.A. Gelman, J. Blackwell, Biochim. Biophys. Acta 342, 254 (1974)CrossRefGoogle Scholar
  16. C.-M.J. Hu, L. Zhang, S. Aryal, C. Cheung, R.H. Fang, L. Zhang, Proc. Natl. Acad. Sci. 108, 10980 (2011)CrossRefGoogle Scholar
  17. S. Hua, M.B.C. de Matos, J.M. Metselaar, G. Storm, Front. Pharmacol. 9, 790 (2018)CrossRefGoogle Scholar
  18. R. Kedmi, N. Ben-Arie, D. Peer, Biomaterials 31, 6867 (2010)CrossRefGoogle Scholar
  19. H.I. Labouta, M.J. Gomez-Garcia, C.D. Sarsons, T. Nguyen, J. Kennard, W. Ngo, K. Terefe, N. Iragorri, P. Lai, K.D. Rinker, D. Cramb, RSC Adv. 8, 7697 (2018)CrossRefGoogle Scholar
  20. D. Landesman-Milo, M. Goldsmith, S. Leviatan-Ben-Arye, B. Witenberg, E. Brown, S. Leibovitch, S. Azriel, S. Tabak, V. Morad, D. Peer, Cancer Lett. 334, 221 (2013)CrossRefGoogle Scholar
  21. J. Lazarovits, Y.Y. Chen, E.A. Sykes, W.C.W. Chan, Chem. Commun. 51, 2756 (2015)CrossRefGoogle Scholar
  22. A. Lee, D. di Mascolo, M. Francardi, F. Piccardi, T. Bandiera, P. Decuzzi, Nanomed.: Nanotechnol. Biol. Med. 12, 2139 (2016)CrossRefGoogle Scholar
  23. C.A. McDevitt, J. Marcelino, L. Tucker, FEBS Lett. 294, 167 (1991)CrossRefGoogle Scholar
  24. S. Mizrahy, S.R. Raz, M. Hasgaard, H. Liu, N. Soffer-Tsur, K. Cohen, R. Dvash, D. Landsman-Milo, M.G.E.G. Bremer, S.M. Moghimi, D. Peer, J. Control. Release 156, 231 (2011)CrossRefGoogle Scholar
  25. S. Mizrahy, M. Goldsmith, S. Leviatan-Ben-Arye, E. Kisin-Finfer, O. Redy, S. Srinivasan, D. Shabat, B. Godin, D. Peer, Nanoscale 6, 3742 (2014)CrossRefGoogle Scholar
  26. T.L. Moore, H. Chen, R. Morrison, F. Wang, J.N. Anker, F. Alexis, Mol. Pharm. 11, 24 (2014)CrossRefGoogle Scholar
  27. T.L. Moore, D. Hauser, T. Gruber, B. Rothen-Rutishauser, M. Lattuada, A. Petri-Fink, R. Lyck, ACS Appl. Mater. Interfaces 9, 18501 (2017)CrossRefGoogle Scholar
  28. G. Nabil, K. Bhise, S. Sau, M. Atef, H.A. El-Banna, A. Iyer, Drug Discov. Today 24, 462 (2019)CrossRefGoogle Scholar
  29. D. Peer, R. Margalit, Arch. Biochem. Biophys. 383, 185 (2000)CrossRefGoogle Scholar
  30. D. Peer, R. Margalit, Int. J. Cancer 108, 780 (2004)CrossRefGoogle Scholar
  31. D. Peer, E.J. Park, Y. Morishita, C.V. Carman, M. Shimaoka, Science 319, 627 (2008)CrossRefGoogle Scholar
  32. A. Pitchaimani, T.D.T. Nguyen, R. Marasini, A. Eliyapura, T. Azizi, M. Jaberi-Douraki, S. Aryal, Adv. Funct. Mater. 29, 1806817 (2019)CrossRefGoogle Scholar
  33. R. Pushpalatha, S. Selvamuthukumar, D. Kilimozhi, J. Drug Delivery Sci. Technol. 39, 362 (2017)CrossRefGoogle Scholar
  34. D. Rosenblum, N. Joshi, W. Tao, J.M. Karp, D. Peer, Nat. Commun. 9, 1410 (2018)CrossRefGoogle Scholar
  35. G. Sancataldo, L. Scipioni, T. Ravasenga, L. Lanzanò, A. Diaspro, A. Barberis, M. Duocastella, Optica 4, 367 (2017)CrossRefGoogle Scholar
  36. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona, Nat. Methods 9, 676 (2012)CrossRefGoogle Scholar
  37. J. Shi, P.W. Kantoff, R. Wooster, O.C. Farokhzad, Nat. Rev. Cancer 17, 20 (2017)CrossRefGoogle Scholar
  38. A. Sontheimer-Phelps, B.A. Hassell, D.E. Ingber, Nat. Rev. Cancer 19, 65 (2019)CrossRefGoogle Scholar
  39. C. Stigliano, J. Key, M. Ramirez, S. Aryal, P. Decuzzi, Adv. Funct. Mater. 25, 3371 (2015)CrossRefGoogle Scholar
  40. T. Stylianopoulos, M.-Z. Poh, N. Insin, M.G. Bawendi, D. Fukumara, L.L. Munn, R.K. Jain, Biophys. J. 99, 1342 (2010)CrossRefGoogle Scholar
  41. E. Syková, C. Nicholson, Physiol. Rev. 88, 1277 (2008)CrossRefGoogle Scholar
  42. E. Tasciotti, X. Liu, R. Bhavane, K. Plant, A.D. Leonard, B.K. Price, M.M.-C. Cheng, P. Decuzzi, J.M. Tour, F. Robertson, M. Ferrari, Nat. Nanotechnol. 3, 151 (2008)CrossRefGoogle Scholar
  43. R.G. Thorne, C. Nicholson, Proc. Natl. Acad. Sci. 103, 5567 (2006)CrossRefGoogle Scholar
  44. G.T. Tietjen, L.G. Bracaglia, W.M. Saltzman, J.S. Pober, Trends Mol. Med. 24, 598 (2018)CrossRefGoogle Scholar
  45. J.-Y. Tinevez, N. Perry, J. Schindelin, G.M. Hoopes, G.D. Reynolds, E. Laplantine, S.Y. Bednarek, S.L. Shorte, K.W. Eliceiri, Methods 115, 80 (2017)CrossRefGoogle Scholar
  46. F. Tröltzsch, Optimal control of partial differential equations, vol. 112 (Graduate Studies in Mathematics, 2010)Google Scholar
  47. M.T. Valentine, Z. E: Perlman, M.L. Gardel, J.H. Shin, P. Matsudaira, T.J. Mitchison, D.A. Weitz, Biophys. J. 86, 4004 (2004)CrossRefGoogle Scholar
  48. S. Wilhelm, A.J. Tavares, Q. Dai, S. Ohta, J. Audet, H.F. Dvorak, W.C.W. Chan, Nat. Rev. Mater. 1, 16014 (2016)CrossRefGoogle Scholar
  49. J. Wolfram, K. Suri, Y. Yang, J. Shen, C. Celia, M. Fresta, Y. Zhao, H. Shen, M. Ferrari, Colloid Surf. B Biointerfaces 114, 294 (2014)CrossRefGoogle Scholar
  50. C. Wong, T. Stylianopoulos, J. Cui, J. Martin, V.P. Chauhan, W. Jiang, Z. Popović, R.K. Jain, M.G. Bawendi, D. Fukumura, Proc. Natl. Acad. Sci. 108, 2426 (2011)CrossRefGoogle Scholar
  51. M. Xavier, Phys. Rev. E82, 041914 (2010)Google Scholar
  52. Q. Xu, L.M. Ensign, N.J. Boylan, A. Schön, X. Gong, J.-C. Yang, N.W. Lamb, S. Cai, T. Yu, E. Freire, J. Hanes, ACS Nano 9, 9217 (2015)CrossRefGoogle Scholar
  53. C. Zhang, E.A. Nance, P. Mastorakos, J. Chisholm, S. Berry, C. Eberhart, B. Tyler, H. Brem, J.S. Suk, J. Hanes, J. Control. Release 263, 112 (2017)CrossRefGoogle Scholar
  54. W. Zhang, M. Wang, W. Tang, R. Wen, S. Zhou, C. Lee, H. Wang, W. Jiang, I.M. Delahunty, Z. Zhen, H. Chen, M. Chapman, Z. Wu, E.W. Howerth, H. Cai, Z. Li, J. Xie, Adv. Mater. 30, 1805557 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Valeria Lusi
    • 1
    • 2
  • Thomas L. Moore
    • 1
  • Federica Laurino
    • 1
    • 3
  • Alessandro Coclite
    • 1
  • Rui Perreira
    • 1
  • Miguel Ferreira
    • 1
  • Ilaria Rizzuti
    • 1
  • Roberto Palomba
    • 1
  • Paolo Zunino
    • 3
  • Marti Duocastella
    • 4
  • Shoshy Mizrahy
    • 1
    • 5
  • Dan Peer
    • 5
  • Paolo Decuzzi
    • 1
    Email author
  1. 1.Laboratory of Nanotechnology for Precision MedicineItalian Institute of TechnologyGenoaItaly
  2. 2.DIBRIS, University of GenovaGenoaItaly
  3. 3.MOX, Department of Mathematics, Politecnico di MilanoMilanItaly
  4. 4.Nanophysics, Italian Institute of TechnologyGenoaItaly
  5. 5.Laboratory of NanoMedicine, Department of Cell Research and ImmunologyTel-Aviv UniversityTel-AvivIsrael

Personalised recommendations