Advertisement

Investigation of parameters that determine Nano-DC vaccine transport

  • Jingxin Zhang
  • Junhua Mai
  • Feng Li
  • Jianliang Shen
  • Guodong Zhang
  • Jun Li
  • Louis E. Hinkle
  • Daniel Lin
  • Xuewu Liu
  • Zheng Li
  • Rong-fu Wang
  • Elizabeth A Mittendorf
  • Mauro FerrariEmail author
  • Haifa ShenEmail author
Article
Part of the following topical collections:
  1. Biomedical Micro-Nanotechnologies toward Translation

Abstract

Effective migration of dendritic cells into the lymphatic system organs is the prerequisite for a functional dendritic cell vaccine. We have previously developed a porous silicon microparticle (PSM)-based therapeutic dendritic cell vaccine (Nano-DC vaccine) where PSM serves both as the vehicle for antigen peptides and an adjuvant. Here, we analyzed parameters that determined dendritic cell uptake of PSM particles and Nano-DC vaccine accumulation in lymphatic tissues in a murine model of HER2-positive breast cancer. Our study revealed a positive correlation between sphericity of the PSM particles and their cellular uptake by circulating dendritic cells. In addition, the intravenously administered vaccines accumulated more in the spleens and inguinal lymph nodes, while the intradermally inoculated vaccines got enriched in the popliteal lymph nodes. Furthermore, mice with large tumors received more vaccines in the lymph nodes than those with small to medium size tumors. Information from this study will provide guidance on design and optimization of future therapeutic cancer vaccines.

Keywords

Silicon Microparticle Nano-DC vaccine Biodistribution Transport 

Notes

Acknowledgements

This work was partially supported by National Institutes of Health grants R01CA193880, R01CA222959 and U54CA210181, US Department of Defense grant W81XWH-17-1-0389, and METAvivor.

References

  1. Y. Ban, J. Mai, X. Li, M. Mitchell-Flack, T. Zhang, L. Zhang, L. Chouchane, M. Ferrari, H. Shen, X. Ma, Targeting autocrine CCL5-CCR5 Axis reprograms immunosuppressive myeloid cells and reinvigorates antitumor immunity. Cancer Res. 77(11), 2857–2868 (2017)CrossRefGoogle Scholar
  2. B.M. Carreno, V. Magrini, M. Becker-Hapak, S. Kaabinejadian, J. Hundal, A.A. Petti, A. Ly, W.R. Lie, W.H. Hildebrand, E.R. Mardis, G.P. Linette, Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348(6236), 803–808 (2015)CrossRefGoogle Scholar
  3. M.A. Cheever, C.S. Higano, PROVENGE (Sipuleucel-T) in prostate cancer: The first FDA-approved therapeutic cancer vaccine. Clin. Cancer Res. 17(11), 3520–3526 (2011)CrossRefGoogle Scholar
  4. M.S. Duthie, H.P. Windish, C.B. Fox, S.G. Reed, Use of defined TLR ligands as adjuvants within human vaccines. Immunol. Rev. 239, 178–196 (2011)CrossRefGoogle Scholar
  5. L. Gelao, C. Criscitiello, A. Esposito, M. De Laurentiis, L. Fumagalli, M.A. Locatelli, I. Minchella, M. Santangelo, S. De Placido, A. Goldhirsch, G. Curigliano, Dendritic cell-based vaccines: Clinical applications in breast cancer. Immunotherapy 6(3), 349–360 (2014)CrossRefGoogle Scholar
  6. F. Ghezzi, A. Cromi, S. Uccella, S. Giudici, M. Franchi, P. Bolis, Left-right asymmetry in pelvic lymph nodes distribution: Is there a right-side prevalence? Eur. J. Obstet. Gynecol. Reprod. Biol. 127(2), 236–239 (2006)CrossRefGoogle Scholar
  7. B. Godin, C. Chiappini, S. Srinivasan, J.F. Alexander, K. Yokoi, M. Ferrari, P. Decuzzi, X. Liu, Discoidal porous silicon particles: Fabrication and biodistribution in breast Cancer bearing mice. Adv. Funct. Mater. 22(20), 4225–4235 (2012)CrossRefGoogle Scholar
  8. M.S. Goldberg, Immunoengineering: How nanotechnology can enhance cancer immunotherapy. Cell 161(2), 201–204 (2015)CrossRefGoogle Scholar
  9. P.W. Kantoff, C.S. Higano, N.D. Shore, E.R. Berger, E.J. Small, D.F. Penson, C.H. Redfern, A.C. Ferrari, R. Dreicer, R.B. Sims, Y. Xu, M.W. Frohlich, P.F. Schellhammer, Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363(5), 411–422 (2010)CrossRefGoogle Scholar
  10. K.L. Knutson, K. Schiffman, M.L. Disis, Immunization with a HER-2/neu helper peptide vaccine generates HER-2/neu CD8 T-cell immunity in cancer patients. J. Clin. Invest. 107(4), 477–484 (2001)CrossRefGoogle Scholar
  11. R. Kuai, L.J. Ochyl, K.S. Bahjat, A. Schwendeman, J.J. Moon, Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat. Mater. 16(4), 489–496 (2017)CrossRefGoogle Scholar
  12. S. Kumar, A.C. Anselmo, A. Banerjee, M. Zakrewsky, S. Mitragotri, Shape and size-dependent immune response to antigen-carrying nanoparticles. J. Control. Release 220(Pt A, 141–148 (2015)CrossRefGoogle Scholar
  13. A.W. Li, M.C. Sobral, S. Badrinath, Y. Choi, A. Graveline, A.G. Stafford, J.C. Weaver, M.O. Dellacherie, T.Y. Shih, O.A. Ali, J. Kim, K.W. Wucherpfennig, D.J. Mooney, A facile approach to enhance antigen response for personalized cancer vaccination. Nat. Mater. 17(6), 528–52+ (2018)CrossRefGoogle Scholar
  14. F. Lucchini, M.G. Sacco, N. Hu, A. Villa, J. Brown, L. Cesano, L. Mangiarini, G. Rindi, S. Kindl, F. Sessa, et al., Early and multifocal tumors in breast, salivary, harderian and epididymal tissues developed in MMTY-Neu transgenic mice. Cancer Lett. 64(3), 203–209 (1992)CrossRefGoogle Scholar
  15. M. Luo, H. Wang, Z. Wang, H. Cai, Z. Lu, Y. Li, M. Du, G. Huang, C. Wang, X. Chen, M.R. Porembka, J. Lea, A.E. Frankel, Y.X. Fu, Z.J. Chen, J. Gao, A STING-activating nanovaccine for cancer immunotherapy. Nat. Nanotechnol. 12(7), 648–654 (2017)CrossRefGoogle Scholar
  16. J. Mai, Y. Huang, C. Mu, G. Zhang, R. Xu, X. Guo, X. Xia, D.E. Volk, G.L. Lokesh, V. Thiviyanathan, D.G. Gorenstein, X. Liu, M. Ferrari, H. Shen, Bone marrow endothelium-targeted therapeutics for metastatic breast cancer. J. Control. Release 187, 22–29 (2014)CrossRefGoogle Scholar
  17. E.A. Mittendorf, G.T. Clifton, J.P. Holmes, K.S. Clive, R. Patil, L.C. Benavides, J.D. Gates, A.K. Sears, A. Stojadinovic, S. Ponniah, G.E. Peoples, Clinical trial results of the HER-2/neu (E75) vaccine to prevent breast cancer recurrence in high-risk patients: From US military Cancer institute clinical trials group study I-01 and I-02. Cancer 118(10), 2594–2602 (2012)CrossRefGoogle Scholar
  18. G. Napolitani, A. Rinaldi, F. Bertoni, F. Sallusto, A. Lanzavecchia, Selected toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat. Immunol. 6(8), 769–776 (2005)CrossRefGoogle Scholar
  19. H. Shen, J. You, G. Zhang, A. Ziemys, Q. Li, L. Bai, X. Deng, D.R. Erm, X. Liu, C. Li, M. Ferrari, Cooperative, nanoparticle-enabled thermal therapy of breast cancer. Adv Healthc Mater 1(1), 84–89 (2012)CrossRefGoogle Scholar
  20. H. Shen, C. Rodriguez-Aguayo, R. Xu, V. Gonzalez-Villasana, J. Mai, Y. Huang, G. Zhang, X. Guo, L. Bai, G. Qin, X. Deng, Q. Li, D.R. Erm, B. Aslan, X. Liu, J. Sakamoto, A. Chavez-Reyes, H.D. Han, A.K. Sood, M. Ferrari, G. Lopez-Berestein, Enhancing chemotherapy response with sustained EphA2 silencing using multistage vector delivery. Clin. Cancer Res. 19(7), 1806–1815 (2013a)CrossRefGoogle Scholar
  21. J. Shen, R. Xu, J. Mai, H.C. Kim, X. Guo, G. Qin, Y. Yang, J. Wolfram, C. Mu, X. Xia, J. Gu, X. Liu, Z.W. Mao, M. Ferrari, H. Shen, High capacity nanoporous silicon carrier for systemic delivery of gene silencing therapeutics. ACS Nano 7(11), 9867–9880 (2013b)CrossRefGoogle Scholar
  22. H. Shen, T. Sun, H.H. Hoang, J.S. Burchfield, G.F. Hamilton, E.A. Mittendorf, M. Ferrari, Enhancing cancer immunotherapy through nanotechnology-mediated tumor infiltration and activation of immune cells. Semin. Immunol 34, 114 (2017)CrossRefGoogle Scholar
  23. J.L. Tanyi, S. Bobisse, E. Ophir, S. Tuyaerts, A. Roberti, R. Genolet, P. Baumgartner, B.J. Stevenson, C. Iseli, D. Dangaj, B. Czerniecki, A. Semilietof, J. Racle, A. Michel, I. Xenarios, C. Chiang, D.S. Monos, D.A. Torigian, H.L. Nisenbaum, O. Michielin, C.H. June, B.L. Levine, D.J. Powell Jr., D. Gfeller, R. Mick, U. Dafni, V. Zoete, A. Harari, G. Coukos, L.E. Kandalaft, Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci. Transl. Med. 10(436), eaao5931 (2018)CrossRefGoogle Scholar
  24. M.E. Turnis, X.T. Song, A. Bear, A.E. Foster, S. Gottschalk, M.K. Brenner, S.Y. Chen, C.M. Rooney, IRAK-M removal counteracts dendritic cell vaccine deficits in migration and longevity. J. Immunol. 185(7), 4223–4232 (2010)CrossRefGoogle Scholar
  25. X. Xia, J. Mai, R. Xu, J.E. Perez, M.L. Guevara, Q. Shen, C. Mu, H.Y. Tung, D.B. Corry, S.E. Evans, X. Liu, M. Ferrari, Z. Zhang, X.C. Li, R.F. Wang, H. Shen, Porous silicon microparticle potentiates anti-tumor immunity by enhancing cross-presentation and inducing type I interferon response. Cell Rep. 11, 957–966 (2015)CrossRefGoogle Scholar
  26. R. Xu, Y. Huang, J. Mai, G. Zhang, X. Guo, X. Xia, E.J. Koay, G. Qin, D.R. Erm, Q. Li, X. Liu, M. Ferrari, H. Shen, Multistage vectored siRNA targeting ataxia-telangiectasia mutated for breast Cancer therapy. Small 9(9–10), 1799–1808 (2013)CrossRefGoogle Scholar
  27. R. Xu, G. Zhang, J. Mai, X. Deng, V. Segura-Ibarra, S. Wu, J. Shen, H. Liu, Z. Hu, L. Chen, Y. Huang, E. Koay, Y. Huang, J. Liu, J.E. Ensor, E. Blanco, X. Liu, M. Ferrari, H. Shen, An injectable nanoparticle generator enhances delivery of cancer therapeutics. Nat. Biotechnol. 34(4), 414–418 (2016)CrossRefGoogle Scholar
  28. O. Yoruk, R. Yuksel, Y. Yuksel, S. Dane, Left-right asymmetry in neck lymph nodes distribution in patients with bilateral laryngeal cancer. Surg. Radiol. Anat. 36(3), 239–242 (2014)CrossRefGoogle Scholar
  29. H. Zong, S. Sen, G. Zhang, C. Mu, Z.F. Albayati, D.G. Gorenstein, X. Liu, M. Ferrari, P.A. Crooks, G.J. Roboz, H. Shen, M.L. Guzman, In vivo targeting of leukemia stem cells by directing parthenolide-loaded nanoparticles to the bone marrow niche. Leukemia 30(7), 1582–1586 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of NanomedicineHouston Methodist Research InstituteHoustonUSA
  2. 2.Xiangya Hospital of Central South UniversityChangshaChina
  3. 3.Center for BioenergeticsHouston Methodist Research InstituteHoustonUSA
  4. 4.State key laboratory of ophthalmology, School of Biomedical EngineeringWenzhou Medical UniversityWenzhouChina
  5. 5.Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonUSA
  6. 6.Department of Surgery, Brigham and Women’s HospitalDana-Farber/ Brigham and Women’s Cancer CenterBostonUSA
  7. 7.Breast Oncology ProgramDana-Farber/ Brigham and Women’s Cancer CenterBostonUSA
  8. 8.Department of MedicineWeill Cornell Medical CollegeNew YorkUSA
  9. 9.Department of Cell and Developmental BiologyWeill Cornell Medical CollegeNew YorkUSA

Personalised recommendations