Functionalization of endovascular devices with superparamagnetic iron oxide nanoparticles for interventional cardiovascular magnetic resonance imaging


Presently, cardiovascular interventions such as stent deployment and balloon angioplasty are performed under x-ray guidance. However, x-ray fluoroscopy has poor soft tissue contrast and is limited by imaging in a single plane, resulting in imprecise navigation of endovascular instruments. Moreover, x-ray fluoroscopy exposes patients to ionizing radiation and iodinated contrast agents. Magnetic resonance imaging (MRI) is a safe and enabling modality for cardiovascular interventions. Interventional cardiovascular MR (iCMR) is a promising approach that is in stark contrast with x-ray fluoroscopy, offering high-resolution anatomic and physiologic information and imaging in multiple planes for enhanced navigational accuracy of catheter-based devices, all in an environment free of radiation and its deleterious effects. While iCMR has immense potential, its translation into the clinical arena is hindered by the limited availability of MRI-visible catheters, wire guides, angioplasty balloons, and stents. Herein, we aimed to create application-specific, devices suitable for iCMR, and demonstrate the potential of iCMR by performing cardiovascular catheterization procedures using these devices. Tools, including catheters, wire guides, stents, and angioplasty balloons, for endovascular interventions were functionalized with a polymer coating consisting of poly(lactide-co-glycolide) (PLGA) and superparamagnetic iron oxide (SPIO) nanoparticles, followed by endovascular deployment in the pig. Findings from this study highlight the ability to image and properly navigate SPIO-functionalized devices, enabling interventions such as successful stent deployment under MRI guidance. This study demonstrates proof-of-concept for rapid prototyping of iCMR-specific endovascular interventional devices that can take advantage of the capabilities of iCMR.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. M. Andreucci, T. Faga, R. Serra, G. De Sarro, A. Michael, Update on the renal toxicity of iodinated contrast drugs used in clinical medicine. Drug Healthc. Patient Saf. 9, 25–37 (2017)

  2. C.J. Bakker, R.M. Hoogeveen, J. Weber, J.J. vanVaals, M.A. Viergever, W.P. Mali, Visualization of dedicated catheters using fast scanning techniques with potential for MR-guided vascular interventions. Magn. Reson. Med. 36(6), 816–820 (1996)

  3. E.J. Benjamin, S.S. Virani, C.W. Callaway, A.M. Chamberlain, A.R. Chang, S. Cheng, et al., Heart disease and stroke Statistics-2018 update: A report from the American Heart Association. Circulation 137(12), e67–e492 (2018)

  4. A. Berrington de Gonzalez, S. Darby, Risk of cancer from diagnostic X-rays: Estimates for the UK and 14 other countries. Lancet 363(9406), 345–351 (2004)

  5. T.M. Bhat, M.E. Afari, L.A. Garcia, Atherectomy in peripheral artery disease: A review. J Invasive Cardiol 29(4), 135–144 (2017)

  6. M. Bock, S. Volz, S. Zuhlsdorff, R. Umathum, C. Fink, P. Hallscheidt, et al., MR-guided intravascular procedures: Real-time parameter control and automated slice positioning with active tracking coils. J. Magn. Reson. Imaging 19(5), 580–589 (2004)

  7. M. Bock, R. Umathum, S. Zuehlsdorff, S. Volz, C. Fink, P. Hallscheidt, et al., Interventional magnetic resonance imaging: An alternative to image guidance with ionising radiation. Radiat. Prot. Dosim. 117(1–3), 74–78 (2005)

  8. C.E. Chambers, K.A. Fetterly, R. Holzer, P.J. Lin, J.C. Blankenship, S. Balter, et al., Radiation safety program for the cardiac catheterization laboratory. Catheter. Cardiovasc. Interv. 77(4), 546–556 (2011)

  9. H. Clogenson, J. Dobbelsteen, Catheters and guidewires for interventional MRI: Are we there yet? J Imaging Intervent Radiol 2, 28 (2016)

  10. Z.C. Higgs, D.A. Macafee, B.D. Braithwaite, C.A. Maxwell-Armstrong, The Seldinger technique: 50 years on. Lancet 366(9494), 1407–1409 (2005)

  11. T. Klemm, S. Duda, J. Machann, K. Seekamp-Rahn, L. Schnieder, C.D. Claussen, et al., MR imaging in the presence of vascular stents: A systematic assessment of artifacts for various stent orientations, sequence types, and field strengths. J. Magn. Reson. Imaging 12(4), 606–615 (2000)

  12. O. Kocaturk, A.H. Kim, C.E. Saikus, M.A. Guttman, A.Z. Faranesh, C. Ozturk, et al., Active two-channel 0.035″ guidewire for interventional cardiovascular MRI. J. Magn. Reson. Imaging 30(2), 461–465 (2009)

  13. J.J. Krueger, P. Ewert, S. Yilmaz, D. Gelernter, B. Peters, K. Pietzner, et al., Magnetic resonance imaging-guided balloon angioplasty of coarctation of the aorta: A pilot study. Circulation 113(8), 1093–1100 (2006)

  14. S. Krueger, S. Schmitz, S. Weiss, D. Wirtz, M. Linssen, H. Schade, et al., An MR guidewire based on micropultruded fiber-reinforced material. Magn. Reson. Med. 60(5), 1190–1196 (2008)

  15. J. Lotz, Interventional vascular MRI: Moving forward. Eur. Heart J. 34(5), 327–329 (2013)

  16. Y. Ma, N. Gogin, P. Cathier, R.J. Housden, G. Gijsbers, M. Cooklin, et al., Real-time x-ray fluoroscopy-based catheter detection and tracking for cardiac electrophysiology interventions. Med. Phys. 40(7), 071902 (2013)

  17. P. Magnusson, E. Johansson, S. Mansson, J.S. Petersson, C.M. Chai, G. Hansson, et al., Passive catheter tracking during interventional MRI using hyperpolarized 13C. Magn. Reson. Med. 57(6), 1140–1147 (2007)

  18. J.R. Mazal, T. Rogers, W.H. Schenke, A.Z. Faranesh, M. Hansen, K. O'Brien, et al., Interventional-cardiovascular MR: Role of the interventional MR technologist. Radiol. Technol. 87(3), 261–270 (2016)

  19. M.E. Miquel, S. Hegde, V. Muthurangu, B.J. Corcoran, S.F. Keevil, D.L.G. Hill, et al., Visualization and tracking of an inflatable balloon catheter using SSFP in a flow phantom and in the heart and great vessels of patients. Magn. Reson. Med. 51(5), 988–995 (2004)

  20. R.A. Omary, O. Unal, D.S. Koscielski, R. Frayne, F.R. Korosec, C.A. Mistretta, et al., Real-time MR imaging-guided passive catheter tracking with use of gadolinium-filled catheters. J. Vasc. Interv. Radiol. 11(8), 1079–1085 (2000)

  21. T. Pucelikova, G. Dangas, R. Mehran, Contrast-induced nephropathy. Catheter. Cardiovasc. Interv. 71(1), 62–72 (2008)

  22. K. Ratnayaka, A.Z. Faranesh, M.A. Guttman, O. Kocaturk, C.E. Saikus, R.J. Lederman, Interventional cardiovascular magnetic resonance: still tantalizing. J. Cardiovasc. Magn. Reson. 10, 62 (2008)

  23. K. Ratnayaka, A.Z. Faranesh, M.S. Hansen, A.M. Stine, M. Halabi, I.M. Barbash, et al., Real-time MRI-guided right heart catheterization in adults using passive catheters. Eur. Heart J. 34(5), 380–389 (2013)

  24. A.N. Raval, J.D. Telep, M.A. Guttman, C. Ozturk, M. Jones, R.B. Thompson, et al., Real-time magnetic resonance imaging-guided stenting of aortic coarctation with commercially available catheter devices in Swine. Circulation 112(5), 699–706 (2005)

  25. T. Rogers, K. Ratnayaka, J.M. Khan, A. Stine, W.H. Schenke, L.P. Grant, et al., CMR fluoroscopy right heart catheterization for cardiac output and pulmonary vascular resistance: Results in 102 patients. J. Cardiovasc. Magn. Reson. 19(1), 54 (2017)

  26. D.L. Rubin, A.V. Ratner, S.W. Young, Magnetic-susceptibility effects and their application in the development of new ferromagnetic catheters for magnetic-resonance-imaging. Investig. Radiol. 25(12), 1325–1332 (1990)

  27. M. Saeed, S.W. Hetts, J. English, M. Wilson, MR fluoroscopy in vascular and cardiac interventions (review). Int. J. Card. Imaging 28(1), 117–137 (2012)

  28. C.E. Saikus, R.J. Lederman, Interventional cardiovascular magnetic resonance imaging: A new opportunity for image-guided interventions. JACC. Cardiovasc. Imaging 2(11), 1321–1331 (2009)

  29. K. Slicker, W.G. Lane, O.O. Oyetayo, L.A. Copeland, E.M. Stock, J.B. Michel, et al., Daily cardiac catheterization procedural volume and complications at an academic medical center. Cardiovasc. Diagn. Ther. 6(5), 446–452 (2016)

  30. A. Stadler, W. Schima, A. Ba-Ssalamah, J. Kettenbach, E. Eisenhuber, Artifacts in body MR imaging: Their appearance and how to eliminate them. Eur. Radiol. 17(5), 1242–1255 (2007)

  31. O. Unal, J. Li, W. Cheng, H. Yu, C.M. Strother, MR-visible coatings for endovascular device visualization. J. Magn. Reson. Imaging 23(5), 763–769 (2006)

  32. K. Zhang, A.J. Krafft, R. Umathum, F. Maier, W. Semmler, M. Bock, Real-time MR navigation and localization of an intravascular catheter with ferromagnetic components. Magn Reson Mater Phy 23(3), 153–163 (2010)

Download references


The authors thank Matthew G. Landry for assistance with schematics. This work was supported by the George and Angelina Kostas Research Center for Cardiovascular Nanomedicine. CHL acknowledges support from the Houston Methodist Specialty Physician Group Grant Program. VS-I is grateful for support from the Instituto Tecnológico y de Estudios Superiores de Monterrey and the Consejo Nacional de Ciencia y Tecnología (CONACyT, 490202/278979). MF gratefully acknowledges support from the Ernest Cockrell Jr. Presidential Distinguished Chair at the Houston Methodist Research Institute. MF serves on the Board of Directors of Arrowhead Pharmaceuticals. The authors declare that they have no conflict of interest.

Author information

Correspondence to Elvin Blanco or C. Huie Lin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 600 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blanco, E., Segura-Ibarra, V., Bawa, D. et al. Functionalization of endovascular devices with superparamagnetic iron oxide nanoparticles for interventional cardiovascular magnetic resonance imaging. Biomed Microdevices 21, 38 (2019) doi:10.1007/s10544-019-0393-x

Download citation


  • Magnetic resonance imaging (MRI)
  • Interventional cardiovascular magnetic resonance (iCMR)
  • Superparamagnetic iron oxide (SPIO) nanoparticles
  • Catheters
  • Polymer coatings