Cell extraction automation in single cell surgery using the displacement method

  • 95 Accesses

  • 2 Citations


Micromanipulation is the precise in vitro handling and study of individual biological cells, where the smallest error can be disastrous. One such example is the extraction of cellular material from multicellular organisms, such as cells from early stage embryos. In this paper, we propose automation methods for the extraction and retrieval of individual cells from a multicellular organism in vitro using the displacement method. Computer-controlled syringe pumps and micromanipulators combined with custom computer vision algorithms are used for automated cell extraction and retrieval. Automation feasibility is demonstrated through automated controlled extraction of one or two blastomeres from cleavage-stage embryos. Preliminary proof of concept blastomere extraction experiments involving mouse embryos obtained success rates ranging from 72% to 88% for the different extraction tasks: displacement, detection, and retrieval. These automated blastomere extraction experiments demonstrate that automated cell extraction is indeed feasible, but the process may still be improved. To the best of these authors’ knowledge, this paper is the first to report the automation of single cell extraction from multicellular organisms using the displacement method, and especially for automated blastomere extraction from cleavage-stage embryos. These methods provide a set of tools for moving towards fully automated single cell surgery procedures.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. A.G. Banerjee, S.K. Gupta, Research in automated planning and control for micromanipulation. IEEE Trans. Autom. Sci. Eng. 10(3), 485–495 (2013)

  2. L. Cedillo, A. Ocampo-Bárcenas, I. Maldonado, F.J. Valdez-Morales, F. Camargo, E. López-Bayghen, A simple, less invasive stripper micropipetter-based technique for day 3 embryo biopsy. Fertility Research and Practice. 2(1), 13 (2016).

  3. H.J. Chi, J.J. Koo, S.Y. Choi, H.J. Jeong, S.I. Roh, Fragmentation of embryos is associated with both necrosis and apoptosis. Fertil. Steril. 96(1), 187–192 (2011)

  4. Y. Chung, I. Klimanskaya, S. Becker, T. Li, M. Maserati, S.J. Lu, T. Zdravkovic, D. Ilic, O. Genbacev, S. Fisher, et al., Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell. 2(2), 113–117 (2008)

  5. H. Dong, W. Wang, Z. Wang, L. Zhou, L. Liu, in Automated micropipette aspiration of cell using resistance-based voltage feedback control. The 7Th IEEE International Conference on Nano/Molecular Medicine and Engineering, (2013), pp. 142–146,

  6. J. Dumoulin, M. Bras, E. Coonen, J. Dreesen, J. Geraedts, J. Evers, Effect of ca2+/Mg2+-free medium on the biopsy procedure for preimplantation genetic diagnosis and further development of human embryos. Hum. Reprod. 13(10), 2880–2883 (1998)

  7. P. Eftekhari-Yazdi, M.R. Valojerdi, S.K. Ashtiani, M.B. Eslaminejad, L. Karimian, Effect of fragment removal on blastocyst formation and quality of human embryos. Reprod. Biomed. Online. 13(6), 823–832 (2006)

  8. L. Feng, P. Di, F. Arai, High-precision motion of magnetic microrobot with ultrasonic levitation for 3-d rotation of single oocyte. Int. J. Robot. Res.. (2016)

  9. A. Fernández-Caballero, J.C. Castillo, J. Martínez-cantos, R. Martínez-Tomás, Optical flow or image subtraction in human detection from infrared camera on mobile robot. Robot. Auton. Syst. 58(12), 1273–1281 (2010)

  10. A. Giusti, G. Corani, L. Gambardella, C. Magli, L. Gianaroli, in Blastomere segmentation and 3D morphology measurements of early embryos from Hoffman modulation contrast image stacks. 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro., (2010), pp. 1261–1264

  11. V. Goossens, M. De Rycke, A. De Vos, C. Staessen, A. Michiels, W. Verpoest, A. Van Steirteghem, C. Bertrand, I. Liebaers, P. Devroey, et al., Diagnostic efficiency, embryonic development and clinical outcome after the biopsy of one or two blastomeres for preimplantation genetic diagnosis. Hum. Reprod. 23(3), 481–492 (2007)

  12. J. Harper, L. Wilton, J. Traeger-Synodinos, V. Goossens, C. Moutou, S. SenGupta, T.P. Budak, P. Renwick, M. De Rycke, J. Geraedts, et al., The ESHRE PGD consortium: 10 years of data collection. Hum. Reprod. Update. 18(3), 234–247 (2012)

  13. G. Harton, M. Magli, K. Lundin, M. Montag, J. Lemmen, J. Harper, ESHRE PGD consortium/embryology special interest group—best practice guidelines for polar body and embryo biopsy for preimplantation genetic diagnosis/screening (pgd/pgs). Hum. Reprod. 26(1), 41–46 (2011)

  14. H. Huang, D. Sun, J.K. Mills, W.J. Li, S.H. Cheng, Visual-based impedance control of out-of-plane cell injection systems. IEEE Trans. Autom. Sci. Eng. 6 (3), 565–571 (2009).

  15. L. Huang, P. Zhao, S. Bian, G. Shi, P. Liu, S. Zong, W. Wang, in A novel biomems device for efficient on-chip single cell loading and 3D rotation. 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)., (2017), pp. 490–493

  16. F. Karimirad, B. Shirinzadeh, W. Yan, S. Fatikow, A vision-based methodology to dynamically track and describe cell deformation during cell micromanipulation. Int. J. Optomechatronics. 7(1), 33–45 (2013)

  17. I. Klimanskaya, Y. Chung, S. Becker, S.J. Lu, R. Lanza, Human embryonic stem cell lines derived from single blastomeres. Nature. 444(7118), 481–485 (2006)

  18. I. Klimanskaya, Y. Chung, S. Becker, S.J. Lu, R. Lanza, Derivation of human embryonic stem cells from single blastomeres. Nat. Protoc. 2(8), 1963–1972 (2007)

  19. C. Leung, Z. Lu, X.P. Zhang, Y. Sun, Three-dimensional rotation of mouse embryos. IEEE Trans. Biomed. Eng. 59(4), 1049–1056 (2012)

  20. I. Paranawithana, W. Yang, U. Tan, in Tracking extraction of blastomere for embryo biopsy. 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)., (2015), pp. 380–384

  21. K.E. Pierce, J. Michalopoulos, A.A. Kiessling, M.M. Seibel, M. Zilberstein, Preimplantation development of mouse and human embryos biopsied at cleavage stages using a modified displacement technique. Hum. Reprod. 12(2), 351–356 (1997).

  22. B.E. Reubinoff, M.F. Pera, C.Y. Fong, A. Trounson, A. Bongso, Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18(4), 399 (2000)

  23. E. Santos Filho, J. Noble, M. Poli, T. Griffiths, G. Emerson, D. Wells, A method for semi-automatic grading of human blastocyst microscope images. Hum. Reprod. 27(9), 2641–2648 (2012)

  24. E. Santos Filho, J. Noble, D. Wells, A review on automatic analysis of human embryo microscope images. Open Biomed. Eng. J. 4, 170 (2010)

  25. Y.K. Shin, Y. Kim, J. Kim, in Automated microfluidic system for orientation control of mouse embryos. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems., (2013), pp. 496–501

  26. E. Shojaei-Baghini, Y. Zheng, Y. Sun, Automated micropipette aspiration of single cells. Ann. Biomed. Eng. 41(6), 1208–1216 (2013)

  27. J.A. Thomson, J. Itskovitz-Eldor, S.S. Shapiro, M.A. Waknitz, J.J. Swiergiel, V.S. Marshall, J.M. Jones, Embryonic stem cell lines derived from human blastocysts. Science. 282(5391), 1145–1147 (1998)

  28. W.H. Wang, K. Kaskar, Y. Ren, J. Gill, T. DeSplinter, G. Haddad, M. Singh, Comparison of development and implantation of human embryos biopsied with two different methods: aspiration and displacement. Fertil. Steril. 92(2), 536–540 (2009)

  29. Z. Wang, W.T. Ang, Automatic dissection position selection for cleavage-stage embryo biopsy. IEEE Trans. Biomed. Eng. 63(3), 563–570 (2016)

  30. Z. Wang, C. Feng, R. Muruganandam, W. Ang, S. Tan, W. Latt, Three-dimensional cell rotation with fluidic flow-controlled cell manipulating device. IEEE/ASME Trans. Mechatron. 21(4), 1995–2003 (2016).

  31. C.Y. Wong, J.K. Mills, in Cleavage-stage embryo rotation tracking and automated micropipette control: towards automated single cell manipulation. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)., (2016), pp. 2351–2356

  32. C.Y. Wong, J.K. Mills, Automation and optimization of multi-pulse laser zona drilling of mouse embryos during embryo biopsy. IEEE Trans. Biomed. Eng. 64(3), 629–636 (2017).

  33. M. Xie, J.K. Mills, Y. Wang, M. Mahmoodi, D. Sun, Automated translational and rotational control of biological cells with a robot-aided optical tweezers manipulation system. IEEE Trans. Autom. Sci. Eng. 13(2), 543–551 (2016)

Download references


This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Fonds de recherche du Québec - Nature et technologies (FRQNT). The authors would like to acknowledge the help received from B. Gu of the Rossant Lab at the Hospital for Sick Children for providing mouse embryos used in experiments.

Author information

Correspondence to Christopher Yee Wong.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 4.93 MB)

(MP4 4.93 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wong, C.Y., Mills, J.K. Cell extraction automation in single cell surgery using the displacement method. Biomed Microdevices 21, 52 (2019) doi:10.1007/s10544-019-0391-z

Download citation


  • Assisted reproductive technologies
  • Computer vision
  • Embryo biopsy
  • in vitro fertilization
  • Micromanipulation