Skip to main content
Log in

Inkjet printed microfluidic paper-based analytical device (μPAD) for glucose colorimetric detection in artificial urine

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This article introduces a novel inkjet printing method for the fabrication of a microfluidic paper-based analytical device (μPADs) with improved analytical performance for colorimetric measurements. Firstly, a hydrophobic boundary was created by wax printing on chromatography paper. Then, chitosan (CHI), 3,3′,5,5’-Tetramethylbenzidine (TMB) and enzymatic mixture solvent (glucose oxidase (GOx) and horseradish peroxidase (HRP)) were sequentially printed in the sensing zone. Polyethylene glycol (PEG6000) was mixed with the bienzymatic solution to act as an enzyme stabilizer, forming the printable ink. The resulting μPADs exhibited a linear relationship between color intensity and glucose concentration from 0.0 25 mg/ml to 0 .5mg/ml. The detectable glucose concentration was in a clinically relevant range from 0.01 mg/ml to 4 mg/ml. The limit of detection (LOD) was achieved at 0.01 mg/ml. After 60-day storage under 4 °C, the color intensity at the testing zone retained over 80% of the original intensity. In addition, a smartphone application was developed for in situ colorimetric image processing, and the colorimetric analysis results were compared with those from the use of a scanner followed by processing using ImageJ. Furthermore, the development of this ink printing method also provides a point of care (POC) platform for other substances detection purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • L. Cai, Y. Wang, Y. Wu, C. Xu, M. Zhong, H. Lai, J. Huang, Analyst. 139, 4593 (2014)

    Article  Google Scholar 

  • P. De Tarso Garcia, T.M. Garcia Cardoso, C.D. Garcia, E. Carrilho, W.K. Tomazelli Coltro, RSC Adv. 4, 37637 (2014)

    Article  Google Scholar 

  • W. Dungchai, O. Chailapakul, C.S. Henry, Anal. Chem. 81, 5821 (2009)

    Article  Google Scholar 

  • E. Evans, E.F. Gabriel, T.E. Benavidez, W.K. Tomazelli Coltro, C.D. Garcia, Analyst. 139, 5560 (2014a)

    Article  Google Scholar 

  • E. Evans, E.F.M. Gabriel, W.K.T. Coltro, C.D. Garcia, Analyst. 139, 2127 (2014b)

    Article  Google Scholar 

  • F. Figueredo, P.T. Garcia, E. Cortón, W.K.T. Coltro, ACS Appl. Mater. Interfaces 8, 11 (2015)

    Article  Google Scholar 

  • E.F. Gabriel, P.T. Garcia, T.M. Cardoso, F.M. Lopes, F.T. Martins, W.K. Coltro, Analyst. 141, 4749 (2016)

    Article  Google Scholar 

  • E. Gabriel, P. Garcia, F. Lopes, W. Coltro, Micromachines. 8, 104 (2017)

    Article  Google Scholar 

  • D.L. Giokas, G.Z. Tsogas, A.G. Vlessidis, Anal. Chem. 86, 6202 (2014)

    Article  Google Scholar 

  • J. Hu, S. Wang, L. Wang, F. Li, B. Pingguan-Murphy, T.J. Lu, F. Xu, Biosens. Bioelectron. 54, 585 (2014)

    Article  Google Scholar 

  • C.H. Lee, L. Tian, S. Singamaneni, ACS Appl. Mater. Interfaces 2, 3429 (2010)

    Article  Google Scholar 

  • B. Li, W. Zhang, L. Chen, B. Lin, Electrophoresis. 34, 2162 (2013)

    Article  Google Scholar 

  • W. Li, D. Qian, Q. Wang, Y. Li, N. Bao, H. Gu, C. Yu, Sens. Actuators. B. Chem. 231, 230 (2016)

  • H. Liu, R.M. Crooks, J. Am. Chem. Soc. 133, 17564 (2011)

    Article  Google Scholar 

  • W. Liu, C.L. Cassano, X. Xu, Z.H. Fan, Anal. Chem. 85, 10270 (2013)

    Article  Google Scholar 

  • S. Liu, W. Su, X. Ding, Sensors., 16 (2016)

  • A. Määttänen, U. Vanamo, P. Ihalainen, P. Pulkkinen, H. Tenhu, J. Bobacka, J. Peltonen, Sens. Actuators. B. Chem. 177, 153 (2013)

  • A.W. Martinez, S.T. Phillips, M.J. Butte, G.M. Whitesides, Angew. Chem. 46, 1318 (2007)

    Article  Google Scholar 

  • A.W. Martinez, S.T. Phillips, E. Carrilho, S.W. Thomas Iii, H. Sindi, G.M. Whitesides, Anal. Chem. vol 80 (2008), p. 3699

    Article  Google Scholar 

  • A. W. Martinez, S. T. Phillips, G. M. Whitesides and E. Carrilho, Diagnostics for the developing world: microfluidic paper-based analytical devices. ed.)^eds.), ACS Publications (2009)

  • S. Mohammadi, M. Maeki, R.M. Mohamadi, A. Ishida, H. Tani, M. Tokeshi, Analyst. 140, 6493 (2015)

    Article  Google Scholar 

  • L.C.D.L. Novaes, A.F. Jozala, P.G. Mazzola, A.P. Júnior, Braz. J. Pharm. Sci. 50, 371 (2014)

    Article  Google Scholar 

  • S. Oyola-Reynoso, A.P. Heim, J. Halbertsma-Black, C. Zhao, I.D. Tevis, S. Cinar, R. Cademartiri, X. Liu, J.F. Bloch, M.M. Thuo, Talanta. 144, 289 (2015)

    Article  Google Scholar 

  • L. Shen, J.A. Hagen, I. Papautsky, Lab Chip 12, 4240 (2012)

    Article  Google Scholar 

  • A.L. Soares, G.M. Guimaraes, B. Polakiewicz, R.N. De Moraes Pitombo, J. Abrahao-Neto, Int. J. Pharm. 237, 163 (2002)

    Article  Google Scholar 

  • M. Talukder, T. Takeyama, Y. Hayashi, J. Wu, T. Kawanishi, N. Shimizu, C. Ogino, Appl. Biochem. Biotechnol. 110, 101 (2003)

    Article  Google Scholar 

  • N.K. Thom, G.G. Lewis, K. Yeung, S.T. Phillips, RSC Adv. 4, 1334 (2014)

    Article  Google Scholar 

  • S.K. Vashist, O. Mudanyali, E.M. Schneider, R. Zengerle, A. Ozcan, Anal. Bioanal. Chem. 406, 3263 (2014)

    Article  Google Scholar 

  • V. Vosmanská, K. Kolářová, S. Rimpelová, Z. Kolská, V. Švorčík, RSC Adv. 5, 17690 (2015)

    Article  Google Scholar 

  • S. Wang, L. Ge, X. Song, J. Yu, S. Ge, J. Huang, F. Zeng, Biosens. Bioelectron. 31, 212 (2012)

    Article  Google Scholar 

  • W.Y. Wei, I.M. White, Analyst. 138, 1020 (2013)

    Article  Google Scholar 

  • X. Wei, T. Tian, S. Jia, Z. Zhu, Y. Ma, J. Sun, Z. Lin, C.J. Yang, Anal. Chem. 88, 2345 (2016)

    Article  Google Scholar 

  • E. Witkowska Nery, Analysis of glucose, cholesterol and uric acid. In Analysis of Samples of Clinical and Alimentary Interest with Paper-Based Devices. pp. 25, (2016)

  • M. Zhou, M. Yang, F. Zhou, Biosens. Bioelectron. 55, 39 (2014)

    Article  Google Scholar 

  • W.-J. Zhu, D.-Q. Feng, M. Chen, Z.-D. Chen, R. Zhu, H.-L. Fang, W. Wang, Sens. Actuators. B. Chem. 190, 414 (2014)

Download references

Acknowledgments

We gratefully acknowledge financial support from Utah Water Research Laboratory, Utah Agricultural Experiment Station, partially by National Science Foundation (award 1264498). We also thank FenAnn Shen from USU Microscopy Core Facility for collecting SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anhong Zhou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 9 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Smith, E., Zhang, W. et al. Inkjet printed microfluidic paper-based analytical device (μPAD) for glucose colorimetric detection in artificial urine. Biomed Microdevices 21, 48 (2019). https://doi.org/10.1007/s10544-019-0388-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-019-0388-7

Keywords

Navigation