Biomedical Microdevices

, 21:21 | Cite as

Numerical evaluation and experimental validation of cross-flow microfiltration device design

  • Marisel De Jesús Vega
  • Joseph Wakim
  • Nese OrbeyEmail author
  • Carol Barry


This research presents a comprehensive analysis of the design and validation of a cross-flow microfiltration device for separation of microspheres based on size. Simulation results showed that pillar size, pillar shape, incorporation of back-flow preventers, and rounding of pillar layouts affected flow patterns in a cross-flow microfiltration device. Simulation results suggest that larger pillar sizes reduce filtration capacity by decreasing the density of microfiltration gaps in the device. Therefore, 10 μm rather than 20 μm diameter pillars were incorporated in the device. Fluid flow was not greatly affected when comparing circular, octagonal, and hexagonal pillars. However, side-channel fluid velocities decreased when using triangular and square pillars. The lengths of back-flow prevention walls were optimized to completely prevent back flow without inhibiting filtration ability. A trade-off was observed in the designs of the pillar layouts; while rounding the pillars layout in the channels bends eliminated stagnation areas, the design also decreased side-channel fluid velocity compared to the right-angle layout. Experimental separation efficiency was tested using polydimethylsiloxane (PDMS) and silicon microfluidic devices with microspheres simulating white and red blood cells. Efficiencies for separation of small microspheres to the side channels ranged from 73 to 75%. The silicon devices retained the large microspheres in the main channel with efficiencies between 95 and 100%, but these efficiencies were lower with PDMS devices and were affected by sphere concentration. Additionally, PDMS devices resulted in greater agglomeration of spheres when compared to silicon devices. PDMS devices, however, were easier and less expensive to fabricate.


Cross-flow microfiltration Microfluidic device COMSOL simulations Optimization Testing with microspheres 



Thanks to Dr. Hongwei Sun for the use his equipment at UMass Lowell, and Hamed Esmailzadeh Khosravieh, Junwei Su, and Che-Fu Su for their assistance with that equipment.


  1. M. Antfolk, T. Laurell, Anal. Chim. Acta 965, 9–35 (2017)CrossRefGoogle Scholar
  2. S. Basuray, S. Senapati, A. Aijian, A.R. Mahon, H.C. Chang, ACS Nano 3(7), 1823–1830 (2009)CrossRefGoogle Scholar
  3. S. Birkar, J. Mead, C. Barry, Rubber Chem. Technol. 87, 629–646 (2014)CrossRefGoogle Scholar
  4. X. Chen, D. Cui, C. Liu, H. Li, J. Chen, Anal. Chim. Acta 584, 237–243 (2007)CrossRefGoogle Scholar
  5. X. Chen, D.F. Cui, C.C. Liu, H. Li, Sensors Actuators B 130, 216–221 (2008)CrossRefGoogle Scholar
  6. C.D. Chin, S.Y. Chin, T. Laksanasopin, S.K. Sia, in Point-of-care diagnostics on a chip, ed. by D. Issadore and R.M. Westervelt, (Springer-Verlag, 2013)Google Scholar
  7. J. Choi, J. Hyun, S. Yang, Sci. Rep. 5, 15167 (2015)CrossRefGoogle Scholar
  8. J.D. Cutnell, K.W. Johnson, Physics, 4th ed. (Wiley, 1998) pp. 308Google Scholar
  9. R.L. Fournier, Basic transport phenomena in biomedical engineering, (Taylor & Francis Group, 2006)Google Scholar
  10. Z. Geng, Y. Ju, Q. Wang, W. Wang, Z. Li, RSC Adv. 3, 14798–14806 (2013)CrossRefGoogle Scholar
  11. S.B.N. Gourikutty, C.P. Chang, P.D. Puiu, J. Chromatogr. B 1011, 77–88 (2016)CrossRefGoogle Scholar
  12. Q. Guo, S.P. Duffy, K. Matthews, E. Islamzada, H. Ma, Sci. Rep. 7, 6627 (2017)CrossRefGoogle Scholar
  13. H.W. Hou, A.A. Bhagat, W.C. Lee, S. Huang, J. Han, C.T. Lim, Micromachines 2, 319–343 (2011)CrossRefGoogle Scholar
  14. H.M. Ji, V. Samper, Y. Chen, C.K. Heng, T.M. Lim, L. Yobas, Biomed. Microdevices 10, 251–257 (2008)CrossRefGoogle Scholar
  15. N.J. Kent, L. Basabe-Desmonts, G. Meade, B.D. MacCraith, B.G. Corcoran, D. Kenny, A.J. Ricco, Biomed. Microdevices 12, 987–1000 (2010)CrossRefGoogle Scholar
  16. B. Kim, Y.J. Choi, H. Seo, E.C. Shin, S. Choi, Small 12, 5159–5168 (2016)CrossRefGoogle Scholar
  17. A.C.M. Kuo, in Polymer data handbook, ed by J.E. Mark, (Oxford University Press, Inc., 1999), p. 411–435Google Scholar
  18. J. Kuo, Y. Zhao, L. Ng, G.S. Yen, R.M. Lorenz, D.S.W. Lim, D.T. Chiu, Lab Chip 9, 1951–1956 (2009)CrossRefGoogle Scholar
  19. J.S. Kuo, Y. Zhao, P.G. Schiro, L. Ng, D.S.W. Lim, J.P. Shelby, D.T. Chiu, Lab Chip 10, 837–842 (2010)CrossRefGoogle Scholar
  20. X. Li, W. Chen, G. Liu, W. Lu, J. Fu, Lab Chip 14, 2565–2575 (2014)CrossRefGoogle Scholar
  21. P. Li, Z. Mao, Z. Peng, L. Zhou, Y. Chen, P.H. Huang, C.I. Truica, J.J. Drabick, W.S. El-Deiry, M. Dao, S. Suresh, T.J. Huang, Proc. Natl. Acad. Sci. 112, 4970–4975 (2015)CrossRefGoogle Scholar
  22. Y.-J. Liu, S.-S. Guo, Z.-L. Zhang, W.-H. Huang, D. Baigl, M. Xie, Y. Chen, D.-W. Pang, Electrophoresis 28, 4713–4722 (2007)CrossRefGoogle Scholar
  23. J. Nam, H. Huang, H. Lim, C. Lim, S. Shin, Anal. Chem. 85(15), 7316–7323 (2013)CrossRefGoogle Scholar
  24. C. Rivet, H. Lee, A. Hirsch, S. Hamilton, H. Lu, Chem. Eng. Sci. 66(7), 1490–1507 (2011)CrossRefGoogle Scholar
  25. A. Russom, P. Sethu, D. Irimia, M.N. Mindrinos, S.E. Calvano, I. Garcia, C. Finnerty, C. Tannahill, A. Abouhamze, J. Wilhelmy, M.C. Lopez, H.V. Baker, D.N. Herndon, S.F. Lowry, R.V. Maler, R.W. Daviw, L.L. Moldawer, R.G. Tompkins, M. Toner, Clin. Chem. 54(5), 891–900 (2008)CrossRefGoogle Scholar
  26. E.K. Sackmann, A.L. Fulton, D.J. Beebe, Nature 507, 181–189 (2014)CrossRefGoogle Scholar
  27. S.T. Sanjay, G. Fu, M. Dou, F. Xu, R. Liu, H. Qi, X.J. Li, Analyst 140, 7062–7081 (2015)CrossRefGoogle Scholar
  28. P. Sethu, A. Sin, M. Toner, Lab Chip 6(1), 83–89 (2006)CrossRefGoogle Scholar
  29. A. Shamloo, P. Vatankhah, M.A. Bijarchi, Eur. J. Mech. B/Fluids 57, 31–39 (2016)MathSciNetCrossRefGoogle Scholar
  30. R.D. Sochol, D. Corbett, S. Hesse, W.E.R. Krieger, K.T. Wolf, M. Kim, K. Iwai, S. Li, L.P. Lee, L. Lin, Lab Chip 14, 1405–1409 (2014)CrossRefGoogle Scholar
  31. S. Song, S. Choi, J. Chromatogr. A 1302, 191–196 (2013)CrossRefGoogle Scholar
  32. Y. Sun, Y.C. Kwok, Anal. Chim. Acta 556, 80–96 (2006)CrossRefGoogle Scholar
  33. G.T. Vladisavljević, N. Khalid, M.A. Neves, T. Kuroiwa, M. Nakajima, K. Uemura, S. Ichikawa, I. Kobayashi, Adv. Drug Deliv. Rev. 65, 1626–1663 (2013)CrossRefGoogle Scholar
  34. L.R. Volpatti, A.K. Yetisen, Trends Biotechnol. 32, 347–350 (2014)CrossRefGoogle Scholar
  35. J.-H. Wang, C.-H. Wang, G.-B. Lee, Ann. Biomed. Eng. 40, 1367–1383 (2012)CrossRefGoogle Scholar
  36. Z. Wu, A.Q. Liu, K. Hjort, J. Micromech. Microeng. 17(10), 1992–1999 (2007)CrossRefGoogle Scholar
  37. S. Yan, J. Zhang, M. Li, G. Alici, H. Du, R. Sluyter, W. Li, Sci. Rep. 4, 5060 (2014)CrossRefGoogle Scholar
  38. Y. Yoon, S. Kim, J. Lee, J. Choi, R.K. Kim, S.J. Lee, O. Sul, S.B. Lee, Sci. Rep. 6(26531) (2016)Google Scholar
  39. Z.T.F. Yu, K.M. Aw Yong, J. Fu, Small 10, 1687–1703 (2014)CrossRefGoogle Scholar
  40. Z.T.F. Yu, J.G. Joseph, S.X. Liu, M.K. Cheung, P.J. Haffey, K. Kurabayashi, J. Fu, Sensors Actuators B 245, 1050–1061 (2017)CrossRefGoogle Scholar
  41. J. Zhang, S. Yan, D. Yuan, G. Alici, N.T. Nguyen, M.E. Warkiani, W. Li, Lab Chip 16, 10 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of Massachusetts LowellLowellUSA
  2. 2.Department of Plastics EngineeringUniversity of Massachusetts LowellLowellUSA

Personalised recommendations