Advertisement

Chitosan-based composite bilayer scaffold as an in vitro osteochondral defect regeneration model

  • Ariane E. Erickson
  • Jialu Sun
  • Sheeny K. Lan Levengood
  • Shawn Swanson
  • Fei-Chien Chang
  • Ching T. Tsao
  • Miqin ZhangEmail author
Article
Part of the following topical collections:
  1. Special Issue on Biomedical Micro-Nanotechnologies toward Translation, in Honor of Mauro Ferrari’s 60th Birthday

Abstract

Prolonged osteochondral tissue damage can result in osteoarthritis and decreased quality of life. Multiphasic scaffolds, where different layers model different microenvironments, are a promising treatment approach, yet stable joining between layers during fabrication remains challenging. Here, a bilayer scaffold for osteochondral tissue regeneration was fabricated using thermally-induced phase separation (TIPS). Two distinct polymer solutions were layered before TIPS, and the resulting porous, bilayer scaffold was characterized by seamless interfacial integration and a mechanical stiffness gradient reflecting the native osteochondral microenvironment. Chitosan is a critical component of both scaffold layers to facilitate cell attachment and the formation of polyelectrolyte complexes with other biologically relevant natural polymers. The articular cartilage region was optimized for hyaluronic acid content and stiffness, while the subchondral bone region was defined by higher stiffness and osteoconductive hydroxyapatite content. Following co-culture with chondrocyte-like (SW-1353 or mesenchymal stem cells) and osteoblast-like cells (MG63), cell proliferation and migration to the interface along with increased gene expression associated with relevant markers of osteogenesis and chondrogenesis indicates the potential of this bilayer scaffold for osteochondral tissue regeneration.

Keywords

Chitosan Hyaluronic acid Alginate Hydroxyapatite Osteochondral defect Bilayer scaffold 

Notes

Acknowledgements

The authors acknowledge support for this work by the Kyocera Professor Endowment and NIH grant (R01CA172455) to Miqin Zhang. Ariane E. Erickson acknowledges support from the National Science Foundation Graduate Research Fellowship Program (DGE–1256082]. Part of this work was conducted at the Molecular Analysis Facility, a National Nanotechnology Coordinated Infrastructure site at the University of Washington which is supported in part by the National Science Foundation (ECC-1542101), the University of Washington, the Molecular Engineering & Sciences Institute, and the Clean Energy Institute.

Supplementary material

10544_2019_373_MOESM1_ESM.docx (112 kb)
ESM 1 (DOCX 112 kb)

References

  1. H.M. Aydin, A three-layered osteochondral plug: Structural, mechanical, and in vitro biocompatibility analysis. Adv. Eng. Mater. 13(12), B511–B517 (2011)CrossRefGoogle Scholar
  2. D.L. Batchelar, M.T.M. Davidson, W. Dabrowski, I.A. Cunningham, Bone-composition imaging using coherent-scatter computed tomography: Assessing bone health beyond bone mineral density. Med. Phys. 33(4), 904–915 (2006)CrossRefGoogle Scholar
  3. J.E. Bekkers, T.S. de Windt, M. Brittberg, D.B. Saris, Cartilage repair in football (soccer) athletes: What evidence leads to which treatment? A critical review of the literature. Cartilage 3(1 Suppl), 43S–49S (2012)CrossRefGoogle Scholar
  4. R. Bexkens, P.T. Ogink, J.N. Doornberg, G. Kerkhoffs, D. Eygendaal, L.S. Oh, M.P.J. van den Bekerom, Donor-site morbidity after osteochondral autologous transplantation for osteochondritis dissecans of the capitellum: A systematic review and meta-analysis. Knee Surg. Sports Traumatol. Arthrosc. 25(7), 2237–2246 (2017)CrossRefGoogle Scholar
  5. B.E. Bobick, F.H. Chen, A.M. Le, R.S. Tuan, Regulation of the Chondrogenic phenotype in culture. Birth Defects Res. C. Embryo Today 87(4), 351–371 (2009)CrossRefGoogle Scholar
  6. B. Cecen, L.D. Kozaci, M. Yuksel, O. Ustun, B.U. Ergur, H. Havitcioglu, Biocompatibility and biomechanical characteristics of loofah based scaffolds combined with hydroxyapatite, cellulose, poly-l-lactic acid with chondrocyte-like cells. Mater. Sci. Eng. C 69, 437–446 (2016)CrossRefGoogle Scholar
  7. B.M. Chesnutt, A.M. Viano, Y. Yuan, Y. Yang, T. Guda, M.R. Appleford, et al., Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration. J. Biomed. Mater. Res. A 88(2), 491–502 (2009)CrossRefGoogle Scholar
  8. C.-S. Chien, H.-O. Ho, Y.-C. Liang, P.-H. Ko, M.-T. Sheu, C.-H. Chen, Incorporation of exudates of human platelet-rich fibrin gel in biodegradable fibrin scaffolds for tissue engineering of cartilage. J. Biomed. Mater. Res. B Appl. Biomater. 100B(4), 948–955 (2012)CrossRefGoogle Scholar
  9. B.J. Cole, C. Pascual-Garrido, R.C. Grumet, Surgical management of articular cartilage defects in the knee. J. Bone Joint Surg. Am. 91(7), 1778–1790 (2009)Google Scholar
  10. A. Di Luca, B. Ostrowska, I. Lorenzo-Moldero, A. Lepedda, W. Swieszkowski, C. Van Blitterswijk, L. Moroni, Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds. Sci. Rep. 6, 22898 (2016)CrossRefGoogle Scholar
  11. D.E. Discher, P. Janmey, Y.L. Wang, Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751), 1139–1143 (2005)CrossRefGoogle Scholar
  12. R. Dorati, C. Colonna, C. Tomasi, I. Genta, G. Bruni, B. Conti, Design of 3D scaffolds for tissue engineering testing a tough polylactide-based graft copolymer. Mater. Sci. Eng. C Mater Biol Appl. 34, 130–139 (2014)CrossRefGoogle Scholar
  13. A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Matrix elasticity directs stem cell lineage specification. Cell 126(4), 677–689 (2006)CrossRefGoogle Scholar
  14. S.J. Florczyk, D.J. Kim, D.L. Wood, M. Zhang, Influence of processing parameters on pore structure of 3D porous chitosan-alginate polyelectrolyte complex scaffolds. J. Biomed. Mater. Res. A 98(4), 614–620 (2011)CrossRefGoogle Scholar
  15. S.J. Florczyk, M. Leung, S. Jana, Z.S. Li, N. Bhattarai, J.I. Huang, et al., Enhanced bone tissue formation by alginate gel-assisted cell seeding in porous ceramic scaffolds and sustained release of growth factor. J. Biomed. Mater. Res. A 100A(12), 3408–3415 (2012)CrossRefGoogle Scholar
  16. S.J. Florczyk, K. Wang, S. Jana, D.L. Wood, S.K. Sytsma, J.G. Sham, et al., Porous chitosan-hyaluronic acid scaffolds as a mimic of glioblastoma microenvironment ECM. Biomaterials 34(38), 10143–10150 (2013)CrossRefGoogle Scholar
  17. S.J. Florczyk, F.M. Kievit, K. Wang, A.E. Erickson, R.G. Ellenbogen, M.Q. Zhang, 3D porous chitosan-alginate scaffolds promote proliferation and enrichment of cancer stem-like cells. J. Mater. Chem. B 4(38), 6326–6334 (2016)CrossRefGoogle Scholar
  18. M. Frydrych, C.Y. Wan, R. Stengler, K.U. O'Kelly, B.Q. Chen, Structure and mechanical properties of gelatin/sepiolite nanocomposite foams. J. Mater. Chem. 21(25), 9103–9111 (2011)CrossRefGoogle Scholar
  19. A. Galperin, R.A. Oldinski, S.J. Florczyk, J.D. Bryers, M.Q. Zhang, B.D. Ratner, Integrated bi-layered scaffold for osteochondral tissue engineering. Adv. Healthc. Mater. 2(6), 872–883 (2013)CrossRefGoogle Scholar
  20. P. Gupta, M. Adhikary, J.C. M, M. Kumar, N. Bhardwaj, B.B. Mandal, Biomimetic, Osteoconductive non-mulberry silk Fiber reinforced Tricomposite scaffolds for bone tissue engineering. ACS Appl. Mater. Interfaces 8(45), 30797–30810 (2016)CrossRefGoogle Scholar
  21. A. He, L. Liu, X. Luo, Y. Liu, F. Liu, X. Wang, et al., Repair of osteochondral defects with in vitro engineered cartilage based on autologous bone marrow stromal cells in a swine model. Sci. Rep. 7, 40489 (2017)CrossRefGoogle Scholar
  22. Y.Y. Hsu, J.D. Gresser, D.J. Trantolo, C.M. Lyons, P.R.J. Gangadharam, D.L. Wise, Effect of polymer foam morphology and density on kinetics of in vitro controlled release of isoniazid from compressed foam matrices. J. Biomed. Mater. Res. 35(1), 107–116 (1997)CrossRefGoogle Scholar
  23. E.B. Hunziker, Articular cartilage repair: Basic science and clinical progress. A review of the current status and prospects. Osteoarthr. Cartil. 10(6), 432–463 (2002)CrossRefGoogle Scholar
  24. E.B. Hunziker, I.M. Driesang, Functional barrier principle for growth-factor-based articular cartilage repair. Osteoarthr. Cartil. 11(5), 320–327 (2003)CrossRefGoogle Scholar
  25. S. Jana, S.J. Florczyk, M. Leung, M.Q. Zhang, High-strength pristine porous chitosan scaffolds for tissue engineering. J. Mater. Chem. 22(13), 6291–6299 (2012)CrossRefGoogle Scholar
  26. X. Jin, J. Zhuang, Z. Zhang, H. Guo, J. Tan, Hydrothermal synthesis of hydroxyapatite nanorods in the presence of sodium citrate and its aqueous colloidal stability evaluation in neutral pH. J. Colloid Interface Sci. 443, 125–130 (2015)CrossRefGoogle Scholar
  27. F.M. Kievit, S.J. Florczyk, M.C. Leung, O. Veiseh, J.O. Park, M.L. Disis, M. Zhang, Chitosan-alginate 3D scaffolds as a mimic of the glioma tumor microenvironment. Biomaterials 31(22), 5903–5910 (2010)CrossRefGoogle Scholar
  28. G. Kim, M. Okumura, T. Ishiguro, T. Kadosawa, T. Fujinaga, Preventive effect of hyaluronic acid on the suppression of attachment and migration abilities of bovine chondrocytes by IL-1 alpha in vitro. J. Vet. Med. Sci. 65(3), 427–430 (2003)CrossRefGoogle Scholar
  29. I.Y. Kim, S.J. Seo, H.S. Moon, M.K. Yoo, I.Y. Park, B.C. Kim, C.S. Cho, Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv. 26(1), 1–21 (2008)CrossRefGoogle Scholar
  30. H.L. Kim, G.Y. Jung, J.H. Yoon, J.S. Han, Y.J. Park, D.G. Kim, et al., Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 54, 20–25 (2015)CrossRefGoogle Scholar
  31. C.B. Knudson, W. Knudson, Hyaluronan and CD44: Modulators of chondrocyte metabolism. Clin. Orthop. Relat. Res. (427 Suppl), S152–S162 (2004)CrossRefGoogle Scholar
  32. E. Kon, M. Delcogliano, G. Filardo, M. Fini, G. Giavaresi, S. Francioli, et al., Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J. Orthop. Res. 28(1), 116–124 (2010)Google Scholar
  33. B. Kreklau, M. Sittinger, M.B. Mensing, C. Voigt, G. Berger, G.R. Burmester, et al., Tissue engineering of biphasic joint cartilage transplants. Biomaterials 20(18), 1743–1749 (1999)CrossRefGoogle Scholar
  34. S.L. Levengood, M. Zhang, Chitosan-based scaffolds for bone tissue engineering. J. Mater. Chem. B 2(21), 3161–3184 (2014)CrossRefGoogle Scholar
  35. T.J. Levingstone, A.C. Ramesh, R.T. Brady, P. Brama, J.P. Gleeson, F.J. O'Brien, Collagen-based multilayered scaffold shows potential for osteochondral defect repair. J. Tissue Eng. Regen. Med. 8, 82–83 (2014)Google Scholar
  36. T.J. Levingstone, E. Thompson, A. Matsiko, A. Schepens, J.P. Gleeson, F.J. O'Brien, Multi-layered collagen-based scaffolds for osteochondral defect repair in rabbits. Acta Biomater. 32, 149–160 (2016)CrossRefGoogle Scholar
  37. Z.S. Li, M.Q. Zhang, Chitosan-alginate as scaffolding material for cartilage tissue engineering. J. Biomed. Mater. Res. A 75A(2), 485–493 (2005)CrossRefGoogle Scholar
  38. Z.S. Li, H.R. Ramay, K.D. Hauch, D.M. Xiao, M.Q. Zhang, Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26(18), 3919–3928 (2005)CrossRefGoogle Scholar
  39. E. Lopez-Ruiz, G. Jimenez, M.A. Garcia, C. Antich, H. Boulaiz, J.A. Marchal, M. Peran, Polymers, scaffolds and bioactive molecules with therapeutic properties in osteochondral pathologies: what’s new? Expert Opin. Ther. Pat. 26(8), 877–890 (2016)CrossRefGoogle Scholar
  40. H.-T. Lu, M.-S. Hsieh, C.-W. Cheng, L.-F. Yao, T.-Y. Hsu, J. Lan, et al., Alterative effects of an oral alginate extract on experimental rabbit osteoarthritis. J. Biomed. Sci. 22(1), 64 (2015)CrossRefGoogle Scholar
  41. H. Madry, C.N. van Dijk, M. Mueller-Gerbl, The basic science of the subchondral bone. Knee Surg. Sports Traumatol. Arthrosc. 18(4), 419–433 (2010)CrossRefGoogle Scholar
  42. P. Malmberg, H. Nygren, Methods for the analysis of the composition of bone tissue, with a focus on imaging mass spectrometry (TOF-SIMS). Proteomics 8(18), 3755–3762 (2008)CrossRefGoogle Scholar
  43. R. Marom, I. Shur, R. Solomon, D. Benayahu, Characterization of adhesion and differentiation markers of osteogenic marrow stromal cells. J. Cell. Physiol. 202(1), 41–48 (2005)CrossRefGoogle Scholar
  44. T. Nie, L. Xue, M. Ge, H. Ma, J. Zhang, Fabrication of poly(L-lactic acid) tissue engineering scaffolds with precisely controlled gradient structure. Mater. Lett. 176, 25–28 (2016)CrossRefGoogle Scholar
  45. G.G. Niederauer, M.A. Slivka, N.C. Leatherbury, D.L. Korvick, H.H. Harroff, W.C. Ehler, et al., Evaluation of multiphase implants for repair of focal osteochondral defects in goats. Biomaterials 21(24), 2561–2574 (2000)CrossRefGoogle Scholar
  46. S.H. Oh, I.K. Park, J.M. Kim, J.H. Lee, In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials 28(9), 1664–1671 (2007)CrossRefGoogle Scholar
  47. S.H. Oh, T.H. Kim, J.H. Lee, Creating growth factor gradients in three dimensional porous matrix by centrifugation and surface immobilization. Biomaterials 32(32), 8254–8260 (2011)CrossRefGoogle Scholar
  48. R. Olivares-Navarrete, E.M. Lee, K. Smith, S.L. Hyzy, M. Doroudi, J.K. Williams, et al., Substrate stiffness controls osteoblastic and Chondrocytic differentiation of mesenchymal stem cells without exogenous stimuli. PLoS One 12(1), e0170312 (2017)CrossRefGoogle Scholar
  49. D. Schaefer, I. Martin, G. Jundt, J. Seidel, M. Heberer, A. Grodzinsky, et al., Tissue-engineered composites for the repair of large osteochondral defects. Arthritis Rheum. 46(9), 2524–2534 (2002)CrossRefGoogle Scholar
  50. M. Schinhan, M. Gruber, P. Vavken, R. Dorotka, L. Samouh, C. Chiari, et al., Critical-size defect induces unicompartmental osteoarthritis in a stable ovine knee. J. Orthop. Res. 30(2), 214–220 (2012)CrossRefGoogle Scholar
  51. K. Schlichting, H. Schell, R.U. Kleemann, A. Schill, A. Weiler, G.N. Duda, D.R. Epari, Influence of scaffold stiffness on subchondral bone and subsequent cartilage regeneration in an ovine model of osteochondral defect healing. Am. J. Sports Med. 36(12), 2379–2391 (2008)CrossRefGoogle Scholar
  52. S.-J. Seo, C. Mahapatra, R.K. Singh, J.C. Knowles, H.-W. Kim, Strategies for osteochondral repair: Focus on scaffolds. J. Tissue Eng. 5, 2041731414541850–2041731414541850 (2014)CrossRefGoogle Scholar
  53. D.E. Shepherd, B.B. Seedhom, The 'instantaneous' compressive modulus of human articular cartilage in joints of the lower limb. Rheumatology (Oxford) 38(2), 124–132 (1999)CrossRefGoogle Scholar
  54. R. Shu, R. McMullen, M.J. Baumann, L.R. McCabe, Hydroxyapatite accelerates differentiation and suppresses growth of MC3T3-E1 osteoblasts. J. Biomed. Mater. Res. A 67A(4), 1196–1204 (2003)CrossRefGoogle Scholar
  55. Y.P. Singh, J.C. Moses, B.K. Bhunia, S.K. Nandi, B.B. Mandal, Hierarchically structured seamless silk scaffolds for osteochondral interface tissue engineering. J. Mater. Chem. B 6(36), 5671–5688 (2018)CrossRefGoogle Scholar
  56. G.D. Smith, G. Knutsen, J.B. Richardson, A clinical review of cartilage repair techniques. J. Bone Joint Surg. Br. Vol. 87B(4), 445–449 (2005)CrossRefGoogle Scholar
  57. R. Trombetta, J.A. Inzana, E.M. Schwarz, S.L. Kates, H.A. Awad, 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann. Biomed. Eng. 45(1), 23–44 (2017)CrossRefGoogle Scholar
  58. J. Venkatesan, S.-K. Kim, Chitosan composites for bone tissue engineering—An overview. Mar. Drugs. 8(8), 2252–2266 (2010)CrossRefGoogle Scholar
  59. K. Wang, F.M. Kievit, A.E. Erickson, J.R. Silber, R.G. Ellenbogen, M.Q. Zhang, Culture on 3D chitosan-hyaluronic acid scaffolds enhances stem cell marker expression and drug resistance in human glioblastoma Cancer stem cells. Adv. Healthc. Mater. 5(24), 3173–3181 (2016)CrossRefGoogle Scholar
  60. S. Weiner, H.D. Wagner, THE MATERIAL BONE: Structure-mechanical function relations. Annu. Rev. Mater. Sci. 28(1), 271–298 (1998)CrossRefGoogle Scholar
  61. S. Yang, K.F. Leong, Z. Du, C.K. Chua, The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 7(6), 679–689 (2001)CrossRefGoogle Scholar
  62. H.S. Yoo, E.A. Lee, J.J. Yoon, T.G. Park, Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Biomaterials 26(14), 1925–1933 (2005)CrossRefGoogle Scholar
  63. P. Yusong, S. Qianqian, P. Chengling, W. Jing, Prediction of mechanical properties of multilayer gradient hydroxyapatite reinforced poly(vinyl alcohol) gel biomaterial. J. Biomed. Mater. Res. B Appl. Biomater. 101B(5), 729–735 (2013)CrossRefGoogle Scholar
  64. R.Y. Zhang, P.X. Ma, Poly(alpha-hydroxyl acids) hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J. Biomed. Mater. Res. 44(4), 446–455 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Science & EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations