Advertisement

In situ three-dimensional printing for reparative and regenerative therapy

  • Nureddin AshammakhiEmail author
  • Samad Ahadian
  • Ippokratis Pountos
  • Shu-Kai Hu
  • Nazzar Tellisi
  • Praveen Bandaru
  • Serge Ostrovidov
  • Mehmet Remzi Dokmeci
  • Ali KhademhosseiniEmail author
Article
  • 225 Downloads
Part of the following topical collections:
  1. Biomedical Micro-Nanotechnologies toward Translation

Abstract

Three-dimensional (3D) bioprinting is an emerging biofabrication technology, driving many innovations and opening new avenues in regenerative therapeutics. The aim of 3D bioprinting is to fabricate grafts in vitro, which can then be implanted in vivo. However, the tissue culture ex vivo carries safety risks and thereby complicated manufacturing equipment and practice are required for tissues to be implanted in the humans. The implantation of printed tissues also adds complexities due to the difficulty in maintaining the structural integrity of fabricated constructs. To tackle this challenge, the concept of in situ 3D bioprinting has been suggested in which tissues are directly printed at the site of injury or defect. Such approach could be combined with cells freshly isolated from patients to produce custom-made grafts that resemble target tissue and fit precisely to target defects. Moreover, the natural cellular microenvironment in the body can be harnessed for tissue maturation resulting in the tissue regeneration and repair. Here, we discuss literature reports on in situ 3D printing and we describe future directions and challenges for in situ 3D bioprinting. We expect that this novel technology would find great attention in different biomedical fields in near future.

Keywords

3D bioprinting Biofabrication Bioinks In situ 3D printing Regeneration 

Notes

Acknowledgements

The authors acknowledge funding from the National Institutes of Health (EB021857, AR066193, AR057837, CA214411, HL137193, EB024403, EB023052, EB022403, and EB021857), and Air Force Office of Sponsored Research under award #FA9550-15-1-0273.

Compliance with ethical standards

Conflict of interest

The authors have no competing interests.

References

  1. S. Ahadian, R.B. Sadeghian, S. Salehi, S. Ostrovidov, H. Bae, M. Ramalingam, A. Khademhosseini, Bioconjugated hydrogels for tissue engineering and regenerative medicine. Bioconjugate Chem. 26 1984–2001 (2015)CrossRefGoogle Scholar
  2. S. Ahadian, R. Civitarese, D. Bannerman, M.H. Mohammadi, R. Lu, E. Wang, L. Davenport-Huyer, B. Lai, B. Zhang, Y. Zhao, S. Mandla, A. Korolj, M. Radisic, Organ-on-a-chip platforms: a convergence of advanced materials, cells, and microscale technologies. Adv. Healthc. Mater. 7, 1700506 (2018)CrossRefGoogle Scholar
  3. M. Albanna, S. Murphy, W. Zhao, I. El-Amin, J. Tan, D. Dice, H.-W. Kang, J. Jackson, A. Atala, J. Yoo, In situ bioprinting of skin for reconstruction. J. Am. Coll. Surg. 187, e8 (2012)Google Scholar
  4. E.D. Anderson, I. Sastalla, N.J. Earland, M. Mahnaz, I.N. Moore, F. Otaizo-Carrasquero, T.G. Myers, C.A. Myles, S.K. Datta, I.A. Myles, Prolonging culture of primary human keratinocytes isolated from suction blisters with the Rho kinase inhibitor Y-27632. Plos One 13, e0198862 (2018)CrossRefGoogle Scholar
  5. N. Ashammakhi, O. Kaarela, Three-dimensional bioprinting can help bone. J. Craniofac. Surg. 29, 9–11 (2018)CrossRefGoogle Scholar
  6. N. Ashammakhi, S. Ahadian, F. Zengjie, K. Suthiwanich, F. Lorestani, G. Orive, S. Ostrovidov, A. Khademhosseini, Advances and future perspectives in 4D bioprinting. Biotechnol. J. 13, 1800148 (2018)CrossRefGoogle Scholar
  7. N. Ashammakhi, S. Ahadian, M.A. Darabi, M. El Tahchi, J. Lee, K. Suthiwanich, A. Sheikhi, M.R. Dokmeci, R. Oklu, A. Khademhosseini, Minimally invasive and regenerative therapeutics. Adv. Mater. 31, 1804041 (2019)CrossRefGoogle Scholar
  8. K.W. Binder, W. Zhao, T. Aboushwareb, D. Dice, A. Atala, J. Yoo, In situ bioprinting of the skin for burns. J. Am. Coll. Surg. 211, S76 (2010)CrossRefGoogle Scholar
  9. D.L. Cohen, J.I. Lipton, L.J. Bonassar, H.J.B. Lipson, Additive manufacturing for in situ repair of osteochondral defects. Biofabrication 2, 035004 (2010)CrossRefGoogle Scholar
  10. C. Colosi, S.R. Shin, V. Manoharan, S. Massa, M. Costantini, A. Barbetta, M.R. Dokmeci, M. Dentini, A. Khademhosseini, Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink. Adv. Mater. 28 677–684 (2016)CrossRefGoogle Scholar
  11. P. Datta, V. Ozbolat, B. Ayan, A. Dhawan, I.T. Ozbolat, Bone tissue bioprinting for craniofacial reconstruction. Biotechnol. Bioeng. 114, 2424–2431 (2017)CrossRefGoogle Scholar
  12. C. Di Bella, S. Duchi, C.D. O'Connell, R. Blanchard, C. Augustine, Z. Yue, F. Thompson, C. Richards, S. Beirne, C. Onofrillo, S.H. Bauquier, S.D. Ryan, P. Pivonka, G.G. Wallace, P.F. Choong, In situ handheld three-dimensional bioprinting for cartilage regeneration. J. Tissue. Eng. Regen. Med. 12, 611–621 (2018)Google Scholar
  13. S. Duchi, C. Onofrillo, C. O’Connell, R. Blanchard, C. Augustine, A. Quigley, R. Kapsa, P. Pivonka, G. Wallace, C. Di Bella, Handheld co-axial bioprinting: Application to in situ surgical cartilage repair. Sci. Rep. 7, 5837 (2017)CrossRefGoogle Scholar
  14. N. Faramarzi, I.K. Yazdi, M. Nabavinia, A. Gemma, A. Fanelli, A. Caizzone, L.M. Ptaszek, I. Sinha, A. Khademhosseini, J.N. Ruskin, A. Tamayol, Patient-specific bioinks for 3D bioprinting of tissue engineering scaffolds. Adv. Healthc. Mater. 7, 1701347 (2018)CrossRefGoogle Scholar
  15. H. Gudapati, M. Hospodiuk, V. Ozbolat, D. Ravnic, I. Ozbolat, In-situ droplet-based bioprinting for functional skin regeneration. In: New Jersy Symposium on Biomaterials Science, (2017)Google Scholar
  16. P.S. Gungor-Ozkerim, I. Inci, Y.S. Zhang, A. Khademhosseini, M.R. Dokmeci, Bioinks for 3D bioprinting: an overview. Biomater. Sci. 6, 915–946 (2018)CrossRefGoogle Scholar
  17. N. Hakimi, R. Cheng, L. Leng, M. Sotoudehfar, P.Q. Ba, N. Bakhtyar, S. Amini-Nik, M.G. Jeschke, A. Günther, Handheld skin printer: in situ formation of planar biomaterials and tissues. Lab. Chip. 18, 1440–1451 (2018)CrossRefGoogle Scholar
  18. V. Keriquel, F. Guillemot, I. Arnault, B. Guillotin, S. Miraux, J. Amédée, J.-C. Fricain, S.J.B. Catros, In vivo bioprinting for computer-and robotic-assisted medical intervention: preliminary study in mice. Biofabrication 2, 014101 (2010)CrossRefGoogle Scholar
  19. V. Keriquel, H. Oliveira, M. Rémy, S. Ziane, S. Delmond, B. Rousseau, S. Rey, S. Catros, J Amédée, F. Guillemot, J.C. Fricain, In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci. Rep. 7, 1778 (2017)Google Scholar
  20. A. Khademhosseini, R. Langer, A decade of progress in tissue engineering. Nat. Protoc. 11, 1775 (2016)CrossRefGoogle Scholar
  21. G.T. Kirby, A. Michelmore, L.E. Smith, J.D. Whittle, R.D. Short, Cell sheets in cell therapies. Cytotherapy 20, 169–180 (2018)CrossRefGoogle Scholar
  22. Y.-C. Li, Y.S. Zhang, A. Akpek, S.R. Shin, A. Khademhosseini, 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials. Biofabrication 9, 012001 (2016)CrossRefGoogle Scholar
  23. Z. Li, C.C. Tasan, H. Springer, B. Gault, D. Raabe, Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys. Sci. Rep. 7, 40704 (2017)Google Scholar
  24. W. Liu, Y.S. Zhang, M.A. Heinrich, F.D. Ferrari, H.L. Jang, S.M. Bakht, M.M. Alvarez, J. Yang, Y.C. Li, G.T. Santiago, A.K. Miri, K. Zhu, P. Khoshakhlagh, G. Prakash, H. Cheng, X. Guan, Z. Zhong, J. Ju, G.H. Zhu, S.R. Shin, M.R. Dokmeci, A. Khademhosseini, Rapid continuous multimaterial extrusion bioprinting Adv. Mater. 29, 1604630 (2017)CrossRefGoogle Scholar
  25. A.K. Miri, D. Nieto, L. Iglesias, H. Goodarzi Hosseinabadi, S. Maharjan, G.U. Ruiz-Esparza, P. Khoshakhlagh, A. Manbachi, M.R. Dokmeci, S. Chen, S.R. Shin, Y.S. Zhang, A. Khademhosseini, Microfluidics-enabled multimaterial maskless stereolithographic bioprinting. Adv. Mater. 30, 1800242 (2018)CrossRefGoogle Scholar
  26. A. Skardal, D. Mack, E. Kapetanovic, A. Atala, J.D. Jackson, J. Yoo, S. Soker, Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem. Cells Transl. Med. 1, 792–802 (2012)CrossRefGoogle Scholar
  27. A. Skardal, S.V. Murphy, K. Crowell, D. Mack, A. Atala, S. Soker, A tunable hydrogel system for long-term release of cell-secreted cytokines and bioprinted in situ wound cell delivery. J. Biomed. Mater. Res. B Appl. Biomater. 105, 1986–2000 (2017)CrossRefGoogle Scholar
  28. P. Sofokleous, E. Stride, W. Bonfield, M.J.M.S. Edirisinghe, Design, construction and performance of a portable handheld electrohydrodynamic multi-needle spray gun for biomedical applications. Mater. Sci. Eng. C Mater. Biol. Appl. 33, 213–223 (2013)CrossRefGoogle Scholar
  29. R. Sood, D.E. Roggy, M.J. Zieger, M. Nazim, B.C. Hartman, J.T. Gibbs A comparative study of spray keratinocytes and autologous meshed split-thickness skin graft in the treatment of acute burn injuries, Wounds 27 31–40 (2015)Google Scholar
  30. N. Taira, K. Ino, J. Robert, H. Shiku, Electrochemical printing of calcium alginate/gelatin hydrogel. Electrochem. Acta 281, 429–436 (2018)CrossRefGoogle Scholar
  31. N. Tellisi, N.A. Ashammakhi, F. Billi, O. Kaarela, Three dimensional printed bone implants in the clinic. J. Craniofac. Surg. 29, 2363–2367 (2018)Google Scholar
  32. M. Wang, J. He, Y. Liu, M. Li, D. Li, Z. Jin, The trend towards in vivo bioprinting. Int. J. Bioprinting 1, 15–26 (2015a)Google Scholar
  33. S. Wang, J.M. Lee, W.Y. Yeong, Smart hydrogels for 3D bioprinting. Int. J. Bioprinting 1, 3–14 (2015b)Google Scholar
  34. Y.S. Zhang, A. Arneri, S. Bersini, S.-R. Shin, K. Zhu, Z. Goli-Malekabadi, J. Aleman, C. Colosi, F. Busignani, V. Dell'Erba, C. Bishop, T. Shupe, D. Demarchi, M. Moretti, M. Rasponi, M.R. Dokmeci, A. Atala, A. Khademhosseini, Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110, 45–59 (2016)CrossRefGoogle Scholar
  35. Y.S. Zhang, K. Yue, J. Aleman, K. Mollazadeh-Moghaddam, S.M. Bakht, J. Yang, W. Jia, V. Dell’Erba, P. Assawes, S.R. Shin, M.R. Dokmeci, R. Oklu, A. Khademhosseini, 3D bioprinting for tissue and organ fabrication. Ann. Biomed. Eng. 45, 148–163 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Nureddin Ashammakhi
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    Email author
  • Samad Ahadian
    • 1
    • 2
    • 4
  • Ippokratis Pountos
    • 7
    • 8
  • Shu-Kai Hu
    • 1
    • 2
    • 3
  • Nazzar Tellisi
    • 7
  • Praveen Bandaru
    • 1
    • 2
    • 3
  • Serge Ostrovidov
    • 1
    • 2
    • 3
  • Mehmet Remzi Dokmeci
    • 1
    • 2
    • 3
  • Ali Khademhosseini
    • 1
    • 2
    • 3
    • 4
    • 9
    • 10
    • 11
    Email author
  1. 1.Center for Minimally Invasive Therapeutics (C-MIT)University of California - Los AngelesCaliforniaUSA
  2. 2.California NanoSystems Institute (CNSI)University of California - Los AngelesLos AngelesUSA
  3. 3.Department of Radiological SciencesUniversity of California - Los AngelesCaliforniaUSA
  4. 4.Department of BioengineeringUniversity of California - Los AngelesCaliforniaUSA
  5. 5.Division of Plastic Surgery, Department of SurgeryOulu UniversityOuluFinland
  6. 6.School of Technology and InnovationsUniversity of VaasaVaasaFinland
  7. 7.Department of Trauma and OrthopaedicsUniversity of LeedsLeedsUK
  8. 8.Chapel Allerton Hospital, Leeds Teaching HospitalsLeedsUK
  9. 9.Department of Chemical and Biomolecular EngineeringUniversity of California - Los AngelesCaliforniaUSA
  10. 10.Center of Nanotechnology, Department of PhysicsKing Abdulaziz UniversityJeddahSaudi Arabia
  11. 11.Department of Bioindustrial Technologies, College of Animal Bioscience and TechnologyKonkuk UniversitySeoulRepublic of Korea

Personalised recommendations