Advertisement

Biomedical Microdevices

, 21:20 | Cite as

A microfluidic device for noninvasive cell electrical stimulation and extracellular field potential analysis

  • Liwei Ni
  • Pawan KC
  • Emily Mulvany
  • Ge ZhangEmail author
  • Jiang ZheEmail author
Article
  • 112 Downloads

Abstract

We developed a device that can quickly apply versatile electrical stimulation (ES) signals to cells suspended in microfluidic channels and measure extracellular field potential simultaneously. The device could trap cells onto the surface of measurement electrodes for ES and push them to the downstream channel after ES by increasing pressure for continuous measurement. Cardiomyocytes, major functional cells in heart, together with human fibroblast cells and human umbilical vein endothelial cells, were tested with the device. Extracellular field potential signals generated from the cells were recorded. We found that under electrical stimulation, cardiomyocytes were triggered to alter their field potential, while non-excitable cells were not triggered. Hence this device can noninvasively distinguish electrically excitable cells from electrically non-excitable cells. Results have also shown that increased cardiomyocyte cell number led to increased magnitude and occurrence of the cell responses. This relationship could be used to detect the viable cells in a cardiac tissue. Application of variable ES signals on different cardiomyocyte clusters has shown that the application of ES clearly boosted cardiomyocytes electrical activities according to the stimulation frequency. In addition, we confirmed that the device can apply ES onto and detect the electrical responses from a mixed cell cluster; the responses from the mixed cluster is dependent on the ratio of cardiomyocytes. These results demonstrated that our device could be used as a tool to optimize ES conditions to facilitate the functional engineered cardiac tissue development.

Keywords

Electrical stimulation Cell analysis Microchannel Extracellular field potential 

Notes

Acknowledgements

This work is supported by National Science Foundation of USA under award ECCS-1625544.

Supplementary material

10544_2019_364_MOESM1_ESM.docx (234 kb)
ESM 1 (DOCX 234 kb)

References

  1. S. Ahadian, J. Ramón-Azcón, S. Ostrovidov, G. Camci-Unal, V. Hosseini, H. Kaji, K. Ino, H. Shiku, A. Khademhosseini, T. Matsue, Lab Chip 12, 3491 (2012)CrossRefGoogle Scholar
  2. A. Al Abed, N.H. Lovell, G. Suaning, S. Member, S. Dokos, in Eng. Med. Biol. Soc. (EMBC), 2015 37th Annu. Int. Conf. IEEE (2015), pp. 2287–2290Google Scholar
  3. T.J. Blanche, J. Neurophysiol. 93, 2987 (2005)Google Scholar
  4. K.F. Chambers, E.M.O. Mosaad, P.J. Russell, J.A. Clements, M.R. Doran, PLoS One 9, e111029 (2014)CrossRefGoogle Scholar
  5. Y.C. Chan, S. Ting, Y.K. Lee, K.M. Ng, J. Zhang, Z. Chen, C.W. Siu, S.K.W. Oh, H.F. Tse, J. Cardiovasc. Transl. Res. 6, 989 (2013)Google Scholar
  6. W. Cheng, N. Klauke, H. Sedgwick, G.L. Smith, J.M. Cooper, Lab Chip 6, 1424 (2006)CrossRefGoogle Scholar
  7. W. Cheng, N. Klauke, G. Smith, J.M. Cooper, Electrophoresis 31, 1405 (2010)CrossRefGoogle Scholar
  8. X. Dai, W. Zhou, T. Gao, J. Liu, C.M. Lieber, Nat. Nanotechnol. 11, 776 (2016)CrossRefGoogle Scholar
  9. Z. Du, O. Bondarenko, D. Wang, M. Rouabhia, Z. Zhang, J. Cell. Physiol. 231, 1301 (2016)Google Scholar
  10. G. Eng, B.W. Lee, L. Protas, M. Gagliardi, K. Brown, R.S. Kass, G. Keller, R.B. Robinson, G. Vunjak-Novakovic, Nat. Commun. 7, 10312 (2016)Google Scholar
  11. D. Eytan, S. Marom, J. Neurosci. 26, 8465 (2006)Google Scholar
  12. R.D. Fields, K. Itoh, Trends Neurosci. 19, 473 (1996)CrossRefGoogle Scholar
  13. U. Frey, U. Egert, F. Heer, S. Hafizovic, A. Hierlemann, Biosens. Bioelectron. 24, 2191 (2009)Google Scholar
  14. F. Heer, S. Hafizovic, W. Franks, T. Ugniwenko, A. Blau, C. Ziegler, A. Hierlemann, in Proc. ESSCIRC 2005 31st Eur. Solid-State Circuits Conf. (2005)Google Scholar
  15. D. Hernández, R. Millard, P. Sivakumaran, R.C.B. Wong, D.E. Crombie, A.W. Hewitt, H. Liang, S.S. C. Hung, A. Pébay, R.K. Shepherd, G.J. Dusting, S.Y. Lim, in Stem Cells Int. (2016)Google Scholar
  16. M. Hutzler, A. Lambacher, B. Eversmann, M. Jenkner, R. Thewes, P. Fromherz, J. Neurophysiol. 96, 1638 (2006)Google Scholar
  17. R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, W. Eberle, Lab Chip 12, 1274 (2012)CrossRefGoogle Scholar
  18. M. Jenkner, M. Tartagni, A. Hierlemann, R. Thewes, in IEEE J. Solid-State Circuits (2004)Google Scholar
  19. S. Joucla, B. Yvert, J. Physiol. Paris 106, 146 (2012)CrossRefGoogle Scholar
  20. S.B. Jun, M.R. Hynd, K.L. Smith, J.K. Song, J.N. Turner, W. Shain, S.J. Kim, Med. Biol. Eng. Comput. 45, 1015 (2007)CrossRefGoogle Scholar
  21. I.S. Kim, J.K. Song, Y.L. Zhang, T.H. Lee, T.H. Cho, Y.M. Song, D.K. Kim, S.J. Kim, S.J. Hwang, Biochim. Biophys. Acta - Mol. Cell Res. 1763, 907 (2006)Google Scholar
  22. N. Klauke, G.L. Smith, J. Cooper, Biophys. J. 85, 1766 (2003)CrossRefGoogle Scholar
  23. N. Klauke, G.L. Smith, J. Cooper, Biophys. J. 91, 2543 (2006)Google Scholar
  24. A. Kotwal, C.E. Schmidt, Biomaterials 22, 1055 (2001)CrossRefGoogle Scholar
  25. A. Llucià-Valldeperas, B. Sanchez, C. Soler-Botija, C. Gálvez-Montón, S. Roura, C. Prat-Vidal, I. Perea-Gil, J. Rosell-Ferrer, R. Bragos, A. Bayes-Genis, Stem Cell Res Ther 5, 93 (2014)CrossRefGoogle Scholar
  26. A. Llucià-Valldeperas, B. Sanchez, C. Soler-Botija, C. Gálvez-Montón, C. Prat-Vidal, S. Roura, J. Rosell-Ferrer, R. Bragos, A. Bayes-Genis, J. Tissue Eng. Regen. Med. 9, E76 (2015)CrossRefGoogle Scholar
  27. D. Malleo, J.T. Nevill, A. Van Ooyen, U. Schnakenberg, L.P. Lee, H. Morgan, Rev. Sci. Instrum. 81, 016104 (2010)Google Scholar
  28. S. Martinoia, N. Rosso, M. Grattarola, L. Lorenzelli, B. Margesin, M. Zen, Biosens. Bioelectron. 16, 1043 (2001)Google Scholar
  29. F.B. Myers, O.J. Abilez, C.K. Zarins, L.P. Lee, in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS (2011), pp. 4030–4033Google Scholar
  30. F.B. Myers, C.K. Zarins, O.J. Abilez, L.P. Lee, Lab Chip 13, 220 (2013)CrossRefGoogle Scholar
  31. R. Nuccitelli, Bioelectromagnetics 13, 147 (1992)CrossRefGoogle Scholar
  32. S.Y. Park, J. Park, S.H. Sim, M.G. Sung, K.S. Kim, B.H. Hong, S. Hong, Adv. Mater. 23, H263 (2011)CrossRefGoogle Scholar
  33. A. Pavesi, M. Soncini, A. Zamperone, S. Pietronave, E. Medico, A. Redaelli, M. Prat, G.B. Fiore, Biotechnol. Bioeng. 111, 1452 (2014)CrossRefGoogle Scholar
  34. M. Schuettler, M. Franke, T.B. Krueger, T. Stieglitz, J. Neurosci. Methods 171, 248 (2008)CrossRefGoogle Scholar
  35. E. Serena, E. Figallo, N. Tandon, C. Cannizzaro, S. Gerecht, N. Elvassore, G. Vunjak-Novakovic, Exp. Cell Res. 315, 3611 (2009)CrossRefGoogle Scholar
  36. M.E. Spira, A. Hai, Nat. Nanotechnol. 8, 83 (2013)CrossRefGoogle Scholar
  37. A. Stett, U. Egert, E. Guenther, F. Hofmann, T. Meyer, W. Nisch, H. Haemmerle, Anal. Bioanal. Chem. 377, 486 (2003)Google Scholar
  38. S.-Y. Wu, H.-S. Hou, Y.-S. Sun, J.-Y. Cheng, K.-Y. Lo, Biomicrofluidics 9, 054120 (2015)CrossRefGoogle Scholar
  39. M. Yamada, K. Tanemura, S. Okada, A. Iwanami, M. Nakamura, H. Mizuno, M. Ozawa, R. Ohyama-Goto, N. Kitamura, M. Kawano, K. Tan-Takeuchi, C. Ohtsuka, A. Miyawaki, A. Takashima, M. Ogawa, Y. Toyama, H. Okano, T. Kondo, Stem Cells 25, 562 (2007)Google Scholar
  40. X. Yuan, D.E. Arkonac, P.G. Chao, G. Vunjak-Novakovic, Sci. Rep. 4, 3674 (2015)CrossRefGoogle Scholar
  41. M. Zhao, Semin. Cell Dev. Biol. 20, 674 (2009)Google Scholar
  42. M. Zhao, H. Bai, E. Wang, J.V. Forrester, C.D. McCaig, J. Cell Sci. 117, 397 (2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of AkronAkronUSA
  2. 2.Department of Biomedical EngineeringUniversity of AkronAkronUSA

Personalised recommendations