Biomedical Microdevices

, 20:95 | Cite as

Microfluidic dielectrophoretic cell manipulation towards stable cell contact assemblies

  • Mohd Anuar Md Ali
  • Aminuddin Bin Ahmad KayaniEmail author
  • Leslie Y. Yeo
  • Adam F. Chrimes
  • Muhammad Zamharir Ahmad
  • Kostya (Ken) Ostrikov
  • Burhanuddin Yeop Majlis


Cell contact formation, which is the process by which cells are brought into close proximity is an important biotechnological process in cell and molecular biology. Such manipulation is achieved by various means, among which dielectrophoresis (DEP) is widely used due to its simplicity. Here, we show the advantages in the judicious choice of the DEP microelectrode configuration in terms of limiting undesirable effects of dielectric heating on the cells, which could lead to their inactivation or death, as well as the possibility for cell clustering, which is particularly advantageous over the linear cell chain arrangement typically achieved to date with DEP. This study comprises of experimental work as well as mathematical modeling using COMSOL. In particular, we establish the parameters in a capillary-based microfluidic system giving rise to these optimum cell–cell contact configurations, together with the possibility for facilitating other cell manipulations such as spinning and rotation, thus providing useful protocols for application into microfluidic bioparticle manipulation systems for diagnostics, therapeutics or for furthering research in cellular bioelectricity and intercellular interactions.


Dielectrophoresis Cell contact Cell chain Spinning Rotation Microfluidics 



We thank the Ministry of Higher Education of Malaysia (MOHE) for support under Fundamental Research Grant Scheme (FRGS) FRGS/2/2013/TK03/UKM/01/1 and FRGS/1/2015/TK04/MMU/02/9 and the Ministry of Education of Malaysia (MOE) for support under the Higher Institution Centre of Excellence (HiCOE) Grant, AKU-95. Dr. Adam Chrimes acknowledges the support of the Victorian Government through the 2015 Victorian Postdoctoral Research Fellowship program. Professor Leslie Yeo is grateful to the Australian Research Council for a Future Fellowship (FT130100672).

Supplementary material

10544_2018_341_MOESM1_ESM.docx (4.5 mb)
Online Resource 1 (DOCX 4.46 mb)
10544_2018_341_MOESM2_ESM.mpg (3.3 mb)
Online Resource 2 (MPG 3340 kb)
10544_2018_341_MOESM3_ESM.mpg (3.4 mb)
Online Resource 3 (MPG 3517 kb)
10544_2018_341_MOESM4_ESM.mpg (5.6 mb)
Online Resource 4 (MPG 5698 kb)
10544_2018_341_MOESM5_ESM.mpg (3.7 mb)
Online Resource 5 (MPG 3760 kb)
10544_2018_341_MOESM6_ESM.mpg (4 mb)
Online Resource 6 (MPG 4112 kb)


  1. M.A. Abdul Razak, K.F. Hoettges, H.O. Fatoyinbo, F.H. Labeed, M.P. Hughes, Biomicrofluidics 7, 064110 (2013)CrossRefGoogle Scholar
  2. Y. Abe, K. Nagamine, M. Nakabayashi, H. Kai, H. Kaji, T. Yamauchi, K. Yamasaki, M. Nishizawa, Biomed. Microdevices 18, 55 (2016)CrossRefGoogle Scholar
  3. A.K. Adya, E. Canetta, G.M. Walker, FEMS Yeast Res. 6, 120 (2006)CrossRefGoogle Scholar
  4. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, J. Wilson, T. Hunt, Molecular Biology of the Cell (Garland Science, New York, 2008)Google Scholar
  5. A. Andryieuski, S.M. Kuznetsova, S.V. Zhukovsky, Y.S. Kivshar, A.V. Lavrinenko, Sci. Rep. 5, 13535 (2015)Google Scholar
  6. P. Benhal, J.G. Chase, P. Gaynor, B. Oback, W. Wang, Lab Chip 14, 2717 (2014)CrossRefGoogle Scholar
  7. H. Berg, in Mod. Bioelectr., ed. by A.A. Marino (CRC Press, New York, 1988), p. 269Google Scholar
  8. M. Birle, C. Leu, in 18th Int. Symp. High Volt. Eng (Seoul, 2013), p. 1025Google Scholar
  9. D. Botstein, G.R. Fink, Genetics 189, 695 (2011)CrossRefGoogle Scholar
  10. S. Burgarella, M. Di Bari, B. Sarah, B.M. Di, Electrophoresis 36, 1466 (2015)CrossRefGoogle Scholar
  11. A. Castellanos, A. Ramos, A. González, N.G. Green, H. Morgan, J. Phys. D. Appl. Phys. 36, 2584 (2003)CrossRefGoogle Scholar
  12. B. Çetin, D. Li, Electrophoresis 32, 2410 (2011)CrossRefGoogle Scholar
  13. B. Çetin, M.B. Özer, M.E. Solmaz, Biochem. Eng. J. 92, 63 (2014)CrossRefGoogle Scholar
  14. H.K. Chu, Z. Huan, J.K. Mills, J. Yang, D. Sun, in IEEE Int. Conf. Intell. Robot. Syst. (Chicago, 2014), p. 2003Google Scholar
  15. J. Coffel, E. Nuxoll, Int. J. Pharm. 544, 335 (2018)CrossRefGoogle Scholar
  16. F. Dal Dosso, T. Kokalj, J. Belotserkovsky, D. Spasic, J. Lammertyn, Biomed. Microdevices 20, 44 (2018)Google Scholar
  17. D.S. Dimitrov, in Handb. Biol. Phys., ed. by R. Lipowsky and E. Sackmann (Elsevier, Amsterdam, 1995), p. 851Google Scholar
  18. H. Ding, J. Shao, Y. Ding, W. Liu, X. Li, H. Tian, Y. Zhou, Appl. Surf. Sci. 330, 178 (2015)CrossRefGoogle Scholar
  19. L. Doh-Hyoung, Y. Chengjie, P. Elisabeth, F. Bakhtier, N.H. M, Electrophoresis 32, 2298 (2011)Google Scholar
  20. V.A. Evans, N. Kumar, A. Filali, F.A. Procopio, O. Yegorov, J.P. Goulet, S. Saleh, E.K. Haddad, C. da Fonseca Pereira, P.C. Ellenberg, R.P. Sekaly, P.U. Cameron, S.R. Lewin, PLoS Pathog. 9, e1003799 (2013)Google Scholar
  21. R.E. Fernandez, B.J. Sanghavi, V. Farmehini, J.L. Chávez, J. Hagen, N. Kelley-Loughnane, C.-F. Chou, N.S. Swami, Electrochem. Commun. 72, 144 (2016)CrossRefGoogle Scholar
  22. M. Ferrari, BioMEMS and Biomedical Nanotechnology (Springer, Boston, 2007)CrossRefGoogle Scholar
  23. N. García, E. Benito, P. Tiemblo, M.M.B. Hasan, A. Synytska, M. Stamm, Soft Matter 6, 4768 (2010)CrossRefGoogle Scholar
  24. M. Gel, Y. Kimura, O. Kurosawa, H. Oana, H. Kotera, M. Washizu, Biomicrofluidics 4, 022808 (2010)CrossRefGoogle Scholar
  25. J.W. Gooch, in Encycl. Dict. Polym., ed. by J. W. Gooch (Springer, New York, 2011), p. 213 Google Scholar
  26. N. Gopalakrishnan, R. Hannam, G.P. Casoni, D. Barriet, J.M. Ribe, M. Haug, O. Halaas, Lab Chip 15, 1481 (2015)CrossRefGoogle Scholar
  27. L. He, J. Huang, N. Perrimon, Proc. Natl. Acad. Sci. 114, 5467 (2017)Google Scholar
  28. N. Hu, J. Yang, S. Qian, S.W. Joo, X. Zheng, Biomicrofluidics 5, 34121 (2011)CrossRefGoogle Scholar
  29. N. Hu, J. Yang, S.W. Joo, A.N. Banerjee, S. Qian, Sensors Actuators B Chem. 178, 63 (2013)Google Scholar
  30. M. Iwamoto, in Encycl. Nanotechnol., ed. by B. Bhushan (Springer, Dordrecht, 2012), p. 1276Google Scholar
  31. T.B. Jones, Electromechanics of Particles (Cambridge University Press, Cambridge; New York, 1995)CrossRefGoogle Scholar
  32. S. Kakaç, Microfluidics Based Microsystems Fundamentals and Applications (Springer, Dordrecht, 2010)CrossRefGoogle Scholar
  33. M. Kandušer, D. Miklavčič, in Electrotechnol. Extr. From Food Plants Biomater., ed. by E. Vorobiev and N. Lebovka (Springer, New York, 2008), p. 1Google Scholar
  34. A.A. Kayani, K. Khoshmanesh, T.G. Nguyen, G. Kostovski, A.F. Chrimes, M. Nasabi, D.A. Heller, A. Mitchell, K. Kalantar-zadeh, Electrophoresis 33, 2075 (2012a)CrossRefGoogle Scholar
  35. A.A. Kayani, K. Khoshmanesh, S.A. Ward, A. Mitchell, K. Kalantar-zadeh, Biomicrofluidics 6, 031501 (2012b)Google Scholar
  36. E.W.M. Kemna, F. Wolbers, I. Vermes, A. van den Berg, Electrophoresis 32, 3138 (2011)CrossRefGoogle Scholar
  37. J.C. Krebs, Y. Alapan, B.A. Dennstedt, G.D. Wera, U.A. Gurkan, Biomed. Microdevices 19, 20 (2017)Google Scholar
  38. J. Li, X. Yu, T.E. Wagner, Y. Wei, Oncol. Lett. 8, 198 (2014)CrossRefGoogle Scholar
  39. J.H. Lienhard IV, J.H. Lienhard V, A Heat Transfer Textbook (Dover Publications, New York, 2011)Google Scholar
  40. A.P. Liu, O. Chaudhuri, S.H. Parekh, Integr. Biol. 9, 383 (2017)CrossRefGoogle Scholar
  41. A. Longo, A. Baraket, M. Vatteroni, N. Zine, J. Baussells, RogerFuoco, F. Di Francesco, G.S. Karanasiou, D.I. Fotiadis, A. Menciassi, A. Errachid, Procedia Eng. 168, 97 (2016)Google Scholar
  42. X. Luo, J.J. He, J. Neuro-Oncol. 21, 66 (2015)Google Scholar
  43. M.A. Md Ali, K. (Ken) Ostrikov, F.A. Khalid, B.Y. Majlis, A.A. Kayani, RSC Adv. 6, 113066 (2016)Google Scholar
  44. M. Mehdizadeh, Microwave/RF Applicators and Probes for Material Heating, Sensing, and Plasma Generation (Elsevier, Amsterdam; Boston, 2010)Google Scholar
  45. K. Menon, R.A. Joy, N. Sood, R.K. Mittal, Bionanoscience 3, 356 (2013)CrossRefGoogle Scholar
  46. H. Morgan, N. Green, in Encycl. Microfluid. Nanofluidics, ed. by D. Li (Springer, New York, 2015), p. 563Google Scholar
  47. O.T. Nedelcu, Rom. J. Inf. Sci. Technol. 14, 309 (2011)Google Scholar
  48. E. Neumann, A.E. Sowers, C.A. Jordan, Electroporation and Electrofusion in Cell Biology (Plenum Press, New York, 1989)CrossRefGoogle Scholar
  49. J.A. Nickoloff, Animal Cell Electroporation and Electrofusion Protocols (Humana Press, Totowa, 1995)Google Scholar
  50. S. Nishimura, H. Matsumura, K. Kosuge, T. Yamaguchi, Langmuir 26, 10357 (2010)CrossRefGoogle Scholar
  51. J. L. Nitiss, J. Heitman, Yeast as a Tool in Cancer Research (Springer, Dordrecht, 2007)Google Scholar
  52. E. Nuxoll, Adv. Drug Deliv. Rev. 65, 1611 (2013)CrossRefGoogle Scholar
  53. B.M. Ogle, M. Cascalho, J.L. Platt, Nat Rev Mol Cell Biol 6, 567 (2005)CrossRefGoogle Scholar
  54. A. Otsuki, T. Sagawa, in Chemeca 2010 Eng. Edge (South Australia, 2010), p. 2568Google Scholar
  55. D.T. Pathak, X. Wei, A. Bucuvalas, D.H. Haft, D.L. Gerloff, D. Wall, PLoS Genet. 8, 1 (2012)CrossRefGoogle Scholar
  56. R. Pethig, Biomicrofluidics 4, 022811 (2010)Google Scholar
  57. R. Pethig, Y. Huang, X. Wang, J.P.H. Burt, J. Phys. D. Appl. Phys. 25, 881 (1992)Google Scholar
  58. P. Piyasena, C. Dussault, T. Koutchma, H.S. Ramaswamy, G.B. Awuah, Crit. Rev. Food Sci. Nutr. 43, 587 (2003)CrossRefGoogle Scholar
  59. R. Plonsey, R.C. Barr, Bioelectricity (Springer, Boston, 2007)Google Scholar
  60. H.A. Pohl, Dielectrophoresis : The Behavior of Neutral Matter in Nonuniform Electric Fields (Cambridge University Press, Cambridge, 1978)Google Scholar
  61. C. Qian, H. Huang, L. Chen, X. Li, Z. Ge, T. Chen, Z. Yang, L. Sun, Int. J. Mol. Sci. 15, 18281 (2014)CrossRefGoogle Scholar
  62. A. Ramos, Electrokinetics and Electrohydrodynamics in Microsystems (Springer, New York, 2011)CrossRefGoogle Scholar
  63. A. Ramos, H. Morgan, N.G. Green, A. Castellanos, J. Phys. D. Appl. Phys. 31, 2338 (1998)CrossRefGoogle Scholar
  64. L. Rems, M. Ušaj, M. Kandušer, M. Reberšek, D. Miklavčič, G. Pucihar, Sci. Rep. 3, 3382 (2013)CrossRefGoogle Scholar
  65. T. Robinson, P.E. Verboket, K. Eyer, P.S. Dittrich, Lab Chip 14, 2852 (2014)CrossRefGoogle Scholar
  66. B. Salim, M.V. Athira, A. Kandaswamy, M. Vijayakumar, T. Saravanan, T. Sairam, Biomed. Microdevices 19, 89 (2017)Google Scholar
  67. J. Schaper, Development of a Technology for Arranged Electrofusion of Mammalian Cells: Applicability in Breast Cancer Immunotherapy, Bielefeld University, 2007Google Scholar
  68. F.I. Schmidt, P. Kuhn, T. Robinson, J. Mercer, P.S. Dittrich, Biophys. J. 105, 420 (2013)CrossRefGoogle Scholar
  69. R.M. Schoeman, E.W.M. Kemna, F. Wolbers, A. van den Berg, Electrophoresis 35, 385 (2014)CrossRefGoogle Scholar
  70. M. Şen, K. Ino, J. Ramón-Azcón, H. Shiku, T. Matsue, Lab Chip 13, 3650 (2013)CrossRefGoogle Scholar
  71. B. Shaparenko, The Thermal Dielectrophoretic Force on a Dielectric Particle in Electric and Temperature, University of Pennsylvania, 2015Google Scholar
  72. Q. Shi, J. Wang, D. Chen, J. Chen, J. Li, K. Bao, Biomed. Microdevices 16, 859 (2014)CrossRefGoogle Scholar
  73. A.V. Shutko, V.S. Gorbunov, K.G. Guria, K.I. Agladze, Biomed. Microdevices 19, 72 (2017)Google Scholar
  74. M.G. Smith, M. Snyder, in Curr. Protoc. Hum. Genet. (Wiley, New York, 2001), p. 15.6.1Google Scholar
  75. R. Soffe, S.-Y. Tang, S. Baratchi, S. Nahavandi, M. Nasabi, J.M. Cooper, A. Mitchell, K. Khoshmanesh, Anal. Chem. 87, 2389 (2015)Google Scholar
  76. R. Soltanzadeh, E. Afsharipour, C. Shafai, N. Anssari, B. Mansouri, Z. Moussavi, Biomed. Microdevices 20, 1 (2017)Google Scholar
  77. G. Stéphane, F. Eric, G. Patrick, Biotechnol. Bioeng. 92, 403 (2005)CrossRefGoogle Scholar
  78. W.-H. Tan, S. Takeuchi, Lab Chip 6, 757 (2006)CrossRefGoogle Scholar
  79. J. Tesarik, Z.P. Nagy, C. Mendoza, E. Greco, Hum. Reprod. 15, 1149 (2000)CrossRefGoogle Scholar
  80. G. Tresset, S. Takeuchi, Biomed. Microdevices 6, 213 (2004)CrossRefGoogle Scholar
  81. A. Troiano, E. Pasero, L. Mesin, in New Adv. Veh. Technol. Automot. Eng., ed. by J. P. Carmo and J. E. Ribeiro (IntechOpen, Rijeka, 2012), p. 231Google Scholar
  82. H.-H. Tsai, C.-F. Lin, Y.-Z. Juang, I.-L. Wang, Y.-C. Lin, R.-L. Wang, H.-Y. Lin, Sensors Actuators B Chem. 144, 407 (2010)CrossRefGoogle Scholar
  83. M. Usaj, K. Flisar, D. Miklavcic, M. Kanduser, Bioelectrochemistry 89, 34 (2013)CrossRefGoogle Scholar
  84. N. Van Pham, J. Villemejane, F. Hamdi, G. Mottet, C. Dalmay, M. Woytasik, E. Martincic, E. Dufour-Gergam, O. Français, L.M. Mir, B. Le Pioufle, Procedia Eng. 5, 49 (2010)CrossRefGoogle Scholar
  85. M. Verduyckt, H. Vignaud, T. Bynens, J. Van den Brande, V. Franssens, C. Cullin, J. Winderickx, in Syst. Biol. Alzheimer’s Dis., ed. by J. I. Castrillo and S. G. Oliver (Springer, New York, 2016), p. 197Google Scholar
  86. J. Voldman, Annu. Rev. Biomed. Eng. 8, 425 (2006)CrossRefGoogle Scholar
  87. T. Wasilewski, J. Gębicki, W. Kamysz, Sensors Actuators B Chem. 257, 511 (2018)CrossRefGoogle Scholar
  88. J. Wu, Y. Ben, D. Battigelli, H.C. Chang, Ind. Eng. Chem. Res. 44, 2815 (2005)CrossRefGoogle Scholar
  89. W. Wu, Y. Qu, N. Hu, Y. Zeng, J. Yang, H. Xu, Z.Q. Yin, PLoS One 10, 1 (2015)Google Scholar
  90. L. Xiong, Y. Yan, M. Jiahao, Z. Yanhang, W. Qian, Z. Zhaohua, R. Tianling, J. Semicond. 36, 64009 (2015)Google Scholar
  91. S. Yan, Y. Zhu, S.-Y. Tang, Y. Li, Q. Zhao, D. Yuan, G. Yun, J. Zhang, S. Zhang, W. Li, Electrophoresis 39, 957 (2018)CrossRefGoogle Scholar
  92. J. Yang, M. H. Shen, in Nucl. Reprogramming Methods Protoc., ed. by S. Pells (Humana Press, Totowa, 2006), p. 59Google Scholar
  93. L. Yang, T. Hong, Y. Zhang, J.G.S. Arriola, B.L. Nelms, R. Mu, D. Li, Biomed. Microdevices 19, 38 (2017)CrossRefGoogle Scholar
  94. S. Youssefian, N. Rahbar, C.R. Lambert, S. Van Dessel, J. R. Soc. Interface 14, 20170127 (2017)CrossRefGoogle Scholar
  95. X. Zhang, Z. Zhu, Z. Ni, N. Xiang, H. Yi, Biomed. Microdevices 19, 21 (2017)CrossRefGoogle Scholar
  96. K. Zhu, A.S. Kaprelyants, E.G. Salina, G.H. Markx, Biomicrofluidics 4, 022809 (2010)CrossRefGoogle Scholar
  97. U. Zimmermann, Biochim. Biophys. Acta - Rev. Biomembr 694, 227 (1982)CrossRefGoogle Scholar
  98. U. Zimmermann, in Methods Hybrid Form, ed. by A. H. Bartal and Y. Hirshaut (Humana Press, Totowa, 1987), p. 97Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mohd Anuar Md Ali
    • 1
  • Aminuddin Bin Ahmad Kayani
    • 2
    • 3
    Email author return OK on get
  • Leslie Y. Yeo
    • 4
  • Adam F. Chrimes
    • 4
  • Muhammad Zamharir Ahmad
    • 5
  • Kostya (Ken) Ostrikov
    • 6
    • 7
  • Burhanuddin Yeop Majlis
    • 1
  1. 1.Institute of Microengineering and NanoelectronicsUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Centre for Advanced Materials and Green Technology, Faculty of Engineering and TechnologyMultimedia UniversityMelakaMalaysia
  3. 3.Functional Materials and Microsystems Research Group, School of EngineeringRMIT UniversityMelbourneAustralia
  4. 4.School of EngineeringRMIT UniversityMelbourneAustralia
  5. 5.Biotechnology and Nanotechnology Research CentreMalaysian Agricultural Research and Development InstituteSerdangMalaysia
  6. 6.School of Chemistry, Physics, and Mechanical EngineeringQueensland University of TechnologyBrisbaneAustralia
  7. 7.CSIRO-QUT Joint Sustainable Processes and Devices LaboratoryLindfieldAustralia

Personalised recommendations