Advertisement

Biomedical Microdevices

, 20:94 | Cite as

A versatile and robust microfluidic device for capillary-sized simple or multiple emulsions production

  • E. Teston
  • V. Hingot
  • V. Faugeras
  • C. Errico
  • M. Bezagu
  • M. Tanter
  • O. Couture
Article
  • 81 Downloads

Abstract

Ultrasound-vaporizable microdroplets can be exploited for targeted drug delivery. However, it requires customized microfluidic techniques able to produce monodisperse, capillary-sized and biocompatible multiple emulsions. Recent development of microfluidic devices led to the optimization of microdroplet production with high yields, low polydispersity and well-defined diameters. So far, only few were shown to be efficient for simple droplets or multiple emulsions production below 5 μm in diameter, which is required to prevent microembolism after intravenous injection. Here, we present a versatile microchip for both simple and multiple emulsion production. This parallelized system based on microchannel emulsification was designed to produce perfluorocarbon in water or water within perfluorocarbon in water emulsions with capillary sizes (<5 μm) and polydispersity index down to 5% for in vivo applications such as spatiotemporally-triggered drug delivery using Ultrasound. We show that droplet production at this scale is mainly controlled by interfacial tension forces, how capillary and viscosity ratios influence droplet characteristics and how different production regimes may take place. The better understanding of droplet formation and its relation to applied pressures is supported by observations with a high-speed camera. Compared to previous microchips, this device opens perspectives to produce injectable and biocompatible droplets with a reasonable yield in order to realize preclinical studies in mice.

Keywords

Drug delivery Microfluidics Microdroplet generation Perfluorocarbons Biocompatible emulsions Multiple emulsions Acoustic droplet vaporization 

Notes

Acknowledgements

This work was supported principally by Plan Cancer, project UICT. This work was also supported by LABEX WIFI (ANR-10-LABX-24) within the French Program “Investments for the Future” under reference ANR-10-IDEX-0001-02-PSL*. The authors warmly thank Baptiste Heiles, Charlotte Constans and Jean-Marie Chassot (Institut Langevin) for their helpful advices.

Compliance with ethical standards

Conflict of interest

MT, CE and OC hold a patent on a parallelized microfluidics droplet production device (PCT/FR2016052890).

Supplementary material

10544_2018_340_MOESM1_ESM.docx (10.8 mb)
ESM 1 (DOCX 11013 kb)

References

  1. G.H. Algire, J. Natl. Cancer Inst. 14, 865 (1954)Google Scholar
  2. E. Amstad, M. Chemama, M. Eggersdorfer, L.R. Arriaga, M.P. Brenner, D.A. Weitz, Lab Chip 16, 4163 (2016)CrossRefGoogle Scholar
  3. M. Bezagu, C. Errico, V. Chaulot-Talmon, F. Monti, M. Tanter, P. Tabeling, J. Cossy, S. Arseniyadis, O. Couture, J. Am. Chem. Soc. 136, 7205 (2014)CrossRefGoogle Scholar
  4. J.J. Choi, J.A. Feshitan, B. Baseri, S. Wang, Y.S. Tung, M.A. Borden, E.E. Konofagou, IEEE Trans. Biomed. Eng. 57, 145 (2010)CrossRefGoogle Scholar
  5. G.F. Christopher, S.L. Anna, J. Phys. D. Appl. Phys. 40, R319 (2007)CrossRefGoogle Scholar
  6. C. Cohen, R. Giles, V. Sergeyeva, N. Mittal, P. Tabeling, D. Zerrouki, J. Baudry, J. Bibette, N. Bremond, Microfluid. Nanofluid. 17, 959 (2014)CrossRefGoogle Scholar
  7. O. Couture, M. Faivre, N. Pannacci, A. Babataheri, V. Servois, P. Tabeling, M. Tanter, Med. Phys. 38, 1116 (2011)CrossRefGoogle Scholar
  8. O. Couture, A. Urban, A. Bretagne, L. Martinez, M. Tanter, P. Tabeling, Med. Phys. 39, 5229 (2012)CrossRefGoogle Scholar
  9. O. Couture, J. Foley, N.F. Kassell, B. Larrat, J.-F. Aubry, Transl. Cancer Res. 3, 494 (2014)Google Scholar
  10. O. Couture, M. Tanter, C. Errico, Patent WO2017085373 A1 / PCT/FR2016052890. Method and device for producing emulsions. (2017)Google Scholar
  11. R. Dangla, S. Cagri Kayi, C.N. Baroud, Proc. Natl. Acad. Sci. U. S. A. 110, 853 (2013)CrossRefGoogle Scholar
  12. A.J. De Mello, Nature 442, 394 (2006)CrossRefGoogle Scholar
  13. M.L. Fabiilli, J. Silpe, C. Rush, D. Lemmerhirt, E. Tang, G. Vasey, O.D. Kripfgans, Ultrasonics Symposium (IUS) IEEE International 1770 (2014)Google Scholar
  14. S. Fokong, B. Theek, Z. Wu, P. Koczera, L. Appold, S. Jorge, U. Resch-Genger, M. van Zandvoort, G. Storm, F. Kiessling, T. Lammers, J. Control. Release 163, 75 (2012)CrossRefGoogle Scholar
  15. Z. Gao, H.D. Fain, N. Rapoport, Mol. Pharm. 1, 317 (2004)CrossRefGoogle Scholar
  16. V. Hingot, M. Bezagu, C. Errico, Y. Desailly, R. Bocheux, M. Tanter, O. Couture, Appl. Phys. Lett. 109, 194102 (2016)CrossRefGoogle Scholar
  17. D. Janasek, J. Franzke, A. Manz, Nature 442, 374 (2006)CrossRefGoogle Scholar
  18. T. Kawakatsu, G. Trägardh, C. Trägardh, Colloids Surf A: Physicochem. Eng. Aspects 189, 257 (2001)CrossRefGoogle Scholar
  19. I. Kobayashi, S. Mukataka, M. Nakajima, Langmuir 21, 7629 (2005)CrossRefGoogle Scholar
  20. I. Kobayashi, M.A. Neves, Y. Wada, K. Uemura, M. Nakajima, Green Process. Synth. 1, 353 (2012)Google Scholar
  21. S. Koster, F.E. Angilè, H. Duan, J.J. Agresti, A. Wintner, C. Schmitz, A.C. Rowat, C.A. Merten, D. Pisignano, A.D. Griffiths, D.A. Weitz, Lab Chip 8, 1110 (2008)CrossRefGoogle Scholar
  22. L. Landau, E. Davis, Lancet 269, 1327 (1957)CrossRefGoogle Scholar
  23. T.Y. Lee, T.M. Choi, T.S. Shim, R.A.M. Frijns, S.H. Kim, Lab Chip 16, 3415 (2016)CrossRefGoogle Scholar
  24. C.Y. Lin, W.G. Pitt, Biomed. Research International, 404361 (2013)Google Scholar
  25. Q. Liu, S. Zhang, S. Shen, J. Yun, K. Yao, Chin. J. Chem. Eng. 19, 478 (2011)CrossRefGoogle Scholar
  26. T.D. Martz, P.S. Sheeran, D. Bardin, A.P. Lee, P.A. Dayton, Ultrasound Med. Biol. 37, 1952 (2011)CrossRefGoogle Scholar
  27. J.J. Nichols, P.E. King-Smith, E.A. Hinel, M. Thangavelu, K.K. Nichols, Invest. Ophtalmol. Vis. Sci. 53, 5426 (2012)CrossRefGoogle Scholar
  28. K. Park, J. Control. Release 236, 117 (2016)CrossRefGoogle Scholar
  29. L. Shang, Y. Cheng, Y. Zhao, Chem. Rev. 17, 7964 (2017)CrossRefGoogle Scholar
  30. P.S. Sheeran, P.A. Dayton, Scientifica, 579684 (2014)Google Scholar
  31. L. Shui, A. van den Berg, J.C.T. Eijkel, Microfluid. Nanofluid. 11, 87 (2011)CrossRefGoogle Scholar
  32. H. Song, D.L. Chen, R.F. Ismagilov, Angew. Chem. Int. Ed. 45, 7336 (2006)CrossRefGoogle Scholar
  33. P.C. Sontum, S. Kvale, A.J. Healey, R. Skurtveit, R. Watanabe, M. Matsumura, J. Ostensen, Int. J. Pharm. 495, 1019 (2015)CrossRefGoogle Scholar
  34. E. Stolovicki, R. Ziblat, D.A. Weitz, Lab Chip 18, 132 (2018)CrossRefGoogle Scholar
  35. S. Sugiura, M. Nakajima, J. Tong, H. Nabetani, M. Seki, J. Colloid Interface Sci. 227, 95 (2000)CrossRefGoogle Scholar
  36. S. Sugiura, M. Nakajima, S. Iwamoto, M. Seki, Langmuir 17, 5562 (2001)CrossRefGoogle Scholar
  37. S. Sugiura, M. Nakajima, M. Seki, Langmuir 18, 3854 (2002a)CrossRefGoogle Scholar
  38. S. Sugiura, M. Nakajima, M. Seki, Langmuir 18, 5708 (2002b)CrossRefGoogle Scholar
  39. S. Sugiura, M. Nakajima, N. Kumazawa, S. Iwamoto, M. Seki, J. Phys. Chem. B 106, 9405 (2002c)CrossRefGoogle Scholar
  40. R. Suzuki, T. Takizawa, Y. Negishi, K. Hagisawa, K. Tanaka, K. Sawamura, N. Utoguchi, T. Nishioka, K. Maruyama, J. Control. Release 117, 130 (2007)CrossRefGoogle Scholar
  41. K. Takamura, K. Fischer, N.R. Morrow, J. Pet. Sci. Eng. 98-99, 50 (2012)CrossRefGoogle Scholar
  42. A.S. Utada, E. Lorenceau, D.R. Link, P.D. Kaplan, H.A. Stone, D.A. Weitz, Science 308, 537 (2005)CrossRefGoogle Scholar
  43. K. van Dijke, I. Kobayashi, K. Schroën, K. Uemura, M. Nakajima, R. Boom, Microfluid. Nanofluid. 9, 77 (2010)CrossRefGoogle Scholar
  44. A. van Wamel, A.J. Healey, P.C. Sontum, S. Kvale, N. Bush, J. Bamber, C. de Lange Davies, J. Control. Release 224, 158 (2016a)CrossRefGoogle Scholar
  45. A. van Wamel, P.C. Sontum, A.J. Healey, S. Kvale, N. Bush, J. Bamber, C. de Lange Davies, J. Control. Release 236, 15 (2016b)CrossRefGoogle Scholar
  46. G.T. Vladisavljevic, I. Kobayashi, M. Nakajima, Microfluid. Nanofluid. 10, 1199 (2011)CrossRefGoogle Scholar
  47. K. Wang, Y.C. Lu, J.H. Xu, G.S. Luo, Langmuir 25, 2153 (2009)CrossRefGoogle Scholar
  48. M.P. Wiedeman, Circ. Res. 12, 375 (1963)CrossRefGoogle Scholar
  49. X. Xiaonan, R. Song, M. He, C. Peng, M. Yu, Y. Hou, H. Qiu, R. Zou, S. Yao, Lab Chip 17, 3504 (2017)CrossRefGoogle Scholar
  50. P. Zhu, L. Wang, Lab Chip 17, 34 (2017)CrossRefGoogle Scholar
  51. B.W. Zweifach, C. Kossmann, Am. J. Phys. 120, 23 (1937)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ESPCI Paris, PSL Research University, Inserm U979, CNRS, Institut LangevinParisFrance

Personalised recommendations