Advertisement

A novel electrochemical immunosensor based on Au nanoparticles and horseradish peroxidase signal amplification for ultrasensitive detection of α-fetoprotein

Article
  • 94 Downloads

Abstract

An electrochemical double-layer Au nanoparticle membrane immunosensor was developed using an electrochemical biosensing signal amplification system with Au nanoparticles, thionine, chitosan, and horseradish peroxidase, which was fabricated using double self-adsorption of Au nanoparticle sol followed by anti-α-fetoprotein Balb/c mouse monoclonal antibody adsorption. The AuNPs sol was characterized by spectrum scanning and transmission electron microscopy. The immunosensor was characterized by atomic force microscopy, cyclic voltammetry, and alternating-current impedance during each stage of adsorption and assembly. The amperometric I-t curve method was used to measure α-fetoprotein (AFP) diluted in phosphate buffered saline. The result indicated a wide linear range, and the change rate of steady-current before and after immune response had linear correlation within the range 0.1–104 pg/mL AFP. The current change rate equation was △I = 5.82334 lgC + 37.01195 (R2 = 0.9922). The lowest limit of detection was 0.03 pg/mL (S/N = 3), and the reproducibility of the sensor was good. Additionally, the sensor could be stably stored above phosphate buffered saline at 4 °C for more than 24 days. More importantly, the sensor is label-free, reagentless and low fouling, making it capable of assaying AFP in real serum samples without suffering from significant interference or biofouling.

Keywords

α-fetoprotein Au nanoparticles Amperometric I-t curve method Electrochemical immunosensor Horseradish peroxidase Membrane potential 

Notes

Acknowledgements

This research was financially supported by “The National Natural Science Foundation of China (grant numbers: 31671857, 31371773)”.

Compliance with ethical standards

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

  1. S. Aydin, Peptides 72, 4–15 (2015)CrossRefGoogle Scholar
  2. P. Ball, L. Garwin, Nature 355, 761–766 (1992)CrossRefGoogle Scholar
  3. M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Science 281, 2013–2016 (1998)CrossRefGoogle Scholar
  4. F.R. Castiello, K. Heileman, M. Tabrizian, Lab Chip 16, 409–431 (2016)CrossRefGoogle Scholar
  5. R.E. Cavicchi, R.H. Silsbee, Phys. Rev. Lett. 52, 1453–1456 (1984)CrossRefGoogle Scholar
  6. W.C.W. Chan, S. Nie, Science 281, 2016–2018 (1998)CrossRefGoogle Scholar
  7. C.D. Chin, V. Linder, S.K. Sia, Lab Chip 12, 2118–2134 (2012)CrossRefGoogle Scholar
  8. M. Cui, Z. Song, Y. Wu, B. Guo, X. Fan, X. Luo, Biosens. Bioelectron. 79, 736–741 (2016)CrossRefGoogle Scholar
  9. G. Frens, Nat. Phys. Sci. 241, 20–22 (1973)CrossRefGoogle Scholar
  10. L. Gerbino, J. Riva, M. Strumia, R.A. Iglesias, A.M. Baruzzi, Sensors Actuators B Chem. 131, 455–461 (2008)CrossRefGoogle Scholar
  11. S. Guo, S. Dong, TrAC-Trend Anal. Chem. 28, 96–109 (2009)CrossRefGoogle Scholar
  12. T.R.J. Holford, F. Davis, S.P.J. Higson, Biosens. Bioelectron. 34, 12–24 (2012)CrossRefGoogle Scholar
  13. J. Hong, Z. Dai, Sensors Actuators B Chem. 140, 222–226 (2009)CrossRefGoogle Scholar
  14. N. Hui, X. Sun, Z. Song, S. Niu, X. Luo, Biosens. Bioelectron. 86, 143–149 (2016)CrossRefGoogle Scholar
  15. L. Jiang, J. Han, F. Li, J. Gao, Y. Li, Y. Dong, Q. Wei, Electrochim. Acta 160, 7–14 (2015)CrossRefGoogle Scholar
  16. W. Jung, J. Han, J. Choi, C.H. Ahn, Microelectron. Eng. 132, 46–57 (2015)CrossRefGoogle Scholar
  17. V. Kameswara Rao, G.P. Rai, G.S. Agarwal, S. Suresh, Anal. Chim. Acta 531, 173–177 (2005)CrossRefGoogle Scholar
  18. X.B. Kang, G.C. Pang, X.Y. Liang, M. Wang, J. Liu, W.M. Zhu, Electrochim. Acta 62, 327–334 (2012)CrossRefGoogle Scholar
  19. X.B. Kang, G.C. Pang, Q.S. Chen, X.Y. Liang, Sensors Actuators B Chem. 177, 1010–1016 (2013)CrossRefGoogle Scholar
  20. B. Kavosi, R. Hallaj, H. Teymourian, A. Salimi, Biosens. Bioelectron. 59, 389–396 (2014)CrossRefGoogle Scholar
  21. N.G. Ladep, S.A. Khan, M.M. Crossey, A.V. Thillainayagam, S.D. Taylor-Robinson, M.B. Toledano, World J. Gastroenterol. 20, 1544–1553 (2014)CrossRefGoogle Scholar
  22. R.P. Liang, J.D. Qiu, P.X. Cai, Anal. Chim. Acta 534, 223–229 (2005)CrossRefGoogle Scholar
  23. G. Liu, W. Guo, D. Song, Biosens. Bioelectron. 52, 360–366 (2014)CrossRefGoogle Scholar
  24. X. Liu, X. Song, Z. Dong, X. Meng, Y. Chen, L. Yang, Biosens. Bioelectron. 91, 431–435 (2017)CrossRefGoogle Scholar
  25. J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Chem. Rev. 105, 1103–1170 (2005)CrossRefGoogle Scholar
  26. H. Ma, J. Sun, Y. Zhang, C. Bian, S. Xia, T. Zhen, Biosens. Bioelectron. 80, 222–229 (2016)CrossRefGoogle Scholar
  27. J.M.D. Machado, R.R.G. Soares, V. Chu, J.P. Conde, Biosens. Bioelectron. 99, 40–46 (2018)CrossRefGoogle Scholar
  28. X. Mao, J. Jiang, J. Chen, Y. Huang, G. Shen, R. Yu, Anal. Chim. Acta 557, 159–163 (2006)CrossRefGoogle Scholar
  29. G. Merola, E. Martini, M. Tomassetti, L. Campanella, J. Pharmaceut, Biomed 106, 186–196 (2015)Google Scholar
  30. M. Moreno-Guzmán, I. Ojeda, R. Villalonga, A. González-Cortés, P. Yáñez-Sedeño, J.M. Pingarrón, Biosens. Bioelectron. 35, 82–86 (2012)CrossRefGoogle Scholar
  31. T. Nagaoka, T. Yoshino, Anal. Chem. 58, 1037–1042 (1986)CrossRefGoogle Scholar
  32. Y. Niu, T. Yang, S. Ma, F. Peng, M. Yi, M. Wan, C. Mao, J. Shen, Biosens. Bioelectron. 92, 1–7 (2017)CrossRefGoogle Scholar
  33. K. Omidfar, F. Khorsand, M.D. Azizi, Biosens. Bioelectron. 43, 336–347 (2013)CrossRefGoogle Scholar
  34. F. Ricci, G. Adornetto, G. Palleschi, Electrochim. Acta 84, 74–83 (2012)CrossRefGoogle Scholar
  35. J.H. Schieving, M. de Vries, J.M.G. van Vugt, C. Weemaes, M. van Deuren, J. Nicolai, R.A. Wevers, M.A. Willemsen, Eur. J. Paediatr. Neurol. 18, 243–248 (2014)CrossRefGoogle Scholar
  36. K. Shi, K.K. Shiu, Anal. Chem. 74, 879–885 (2002)CrossRefGoogle Scholar
  37. J.Q. Tang, G.C. Pang, J.R. Gao, X.Y. Liang, Food Sci. Biotechnol. 29, 533–553 (2010) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SPKX201104063.htm Google Scholar
  38. X.Y. Wang, G.C. Pang, Sens. Rev. 35, 30–42 (2015)CrossRefGoogle Scholar
  39. H. Wang, H. Li, Y. Zhang, Q. Wei, H. Ma, D. Wu, Y. Li, B. Du, Biosens. Bioelectron. 53, 305–309 (2014)CrossRefGoogle Scholar
  40. H. Yi, L.Q. Wu, W.E. Bentley, R. Ghodssi, G.W. Rubloff, J.N. Culver, G.F. Payne, Biomacromolecules 6, 2881–2894 (2005)CrossRefGoogle Scholar
  41. R.A. Zangmeister, J.J. Park, G.W. Rubloff, M.J. Tarlov, Electrochim. Acta 51, 5324–5333 (2006)CrossRefGoogle Scholar
  42. S. Zhang, L. Zang, X. Zhang, H. Dai, G. Xu, Q. Zhang, C. Yang, Y. Lin, Electrochim. Acta 196, 67–74 (2016)CrossRefGoogle Scholar
  43. M. Zou, D. Li, R. Yuan, Y. Xiang, Biosens. Bioelectron. 92, 624–629 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of BiotechnologyTianjin University of Science &TechnologyTianjinChina
  2. 2.Key Laboratory of Industrial Fermentation Microbiology, Ministry of EducationTianjinChina
  3. 3.College of Biotechnology & Food ScienceTianjin University of CommerceTianjinChina
  4. 4.Tianjin Key Laboratory of Food BiotechnologyTianjinChina

Personalised recommendations