An ultrasonically controlled switching system for power management in implantable devices

  • Jiawei Zhou
  • Albert Kim
  • Babak ZiaieEmail author


In this paper, we present an ultrasonically controlled switching system that can save the battery power for implantable devices by turning the system on and off, on-demand. Ultrasonic control is employed to reduce the device size, increase the penetration depth, and reduce misalignment sensitivity associated with alternative techniques using permanent magnet and RF signal. As a proof-of-concept demonstration, a 665 kHz ultrasonic signal is used to activate a piezoelectric receiver which in turn switches a battery-powered RF system on-and-off. In-vitro tests show a reliable switching functionality at distances of up to 8 cm while consuming 43.5 nW (14.5 nA current consumption with 3 V power supply) when the system is in off-state, a factor of 10–100 times lower than the sleep-mode power consumption of typical RF SoC systems. The dimension of fabricated prototype is 6.3 × 16.7 × 2‍ mm3 allowing it to be easily incorporated into many existing implantable devices.


Piezoelectric Ultrasonic control Power management Wireless Implantable device 



The authors would like to thank the staff of the Birck Nanotechnology Center at Purdue University and Sayemul Islam at Temple University for their support of fabrication and experiment.


  1. J.E. Aldrich, Crit. Care Med. 35, S131 (2007)CrossRefGoogle Scholar
  2. H.V. Allen, J.W. Knutti, Solid-state circuits Conf. Dig. Tech. Pap. 1981 IEEE Int. IEEE 24, 166 (1981)Google Scholar
  3. A. Arbabian, T.C. Chang, M.L. Wang, J. Charthad, S. Baltsavias, M. Fallahpour, M.J. Weber, IEEE Microw. Mag. 17, 39 (2016)CrossRefGoogle Scholar
  4. H. Azhari, Basics of Biomedical Ultrasound for Engineers (2010)CrossRefGoogle Scholar
  5. H. Basaeri, D.B. Christensen, S. Roundy, Smart Mater. Struct. 25, 1 (2016)CrossRefGoogle Scholar
  6. D.C. Bock, A.C. Marschilok, K.J. Takeuchi, E.S. Takeuchi, Electrochim. Acta 84, 155 (2012)CrossRefGoogle Scholar
  7. Food and Drug Administration, Silver. Spring (2008)Google Scholar
  8. R. Holland, Acoust. Soc. Am. J. 43, 1 (1968)CrossRefGoogle Scholar
  9. S. Iskandar, M. Reddy, M. Lavu, M. Atoui, M. Vodapally, R. Neerumalla, M. Molugu, R. Swarna, Q. Javed, K. Gangu, A. Gone, Circulation 134, A16029 (2016)Google Scholar
  10. W. S. Lee, A. Kim, B. Ziaie, V. Raghunathan, and C. R. Powell, IEEE 2014 Biomed. Circuits Syst. Conf. BioCAS 2014 - Proc. 384 (2014)Google Scholar
  11. A. Leger and M. Deschamps, Ultrasonic Wave Propagation in Non Homogeneous Media NY, (2009)Google Scholar
  12. S.J.A. Majerus, P.C. Fletter, M.S. Damaser, S.L. Garverick, IEEE Trans. Biomed. Eng. 58, 763 (2011)CrossRefGoogle Scholar
  13. T. Maleki, N. Cao, S.H. Song, C. Kao, S.-C.A. Ko, B. Ziaie, IEEE Trans. Biomed. Eng. 58, 3104 (2011)CrossRefGoogle Scholar
  14. R. W. Martin, R. A. Sigelmann, and R. W. Martin, 475, (1984)Google Scholar
  15. J. R. Moser and A. A. Schneider, (1972)Google Scholar
  16. S. Ozeri, D. Shmilovitz, Ultrasonics 50, 556 (2010)CrossRefGoogle Scholar
  17. P. Ritter, G.Z. Duray, S. Zhang, C. Narasimhan, K. Soejima, R. Omar, V. Laager, K. Stromberg, E. Williams, D. Reynolds, Europace 17, 807 (2015)CrossRefGoogle Scholar
  18. A. Santić, S. Vamvakas, M.R. Neuman, IEEE Trans. Biomed. Eng. 29, 583 (1982)CrossRefGoogle Scholar
  19. S.H. Song, A. Kim, B. Ziaie, IEEE Trans. Biomed. Eng. 62, 2717 (2015)CrossRefGoogle Scholar
  20. J. Zhou, A. Kim, B. Ziaie, IEEE biomed. Circuits Syst. Conf. Eng. Heal. Minds able bodies. BioCAS 2015 - Proc., 1 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electrical and Computer EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.Birck Nanotechnology CenterPurdue UniversityWest LafayetteUSA
  3. 3.Department of Electrical and Computer EngineeringTemple UniversityPhiladelphiaUSA

Personalised recommendations