A bead-based immunogold-silver staining assay on capillary-driven microfluidics

  • Ngoc M. Pham
  • Sebastian Rusch
  • Yuksel Temiz
  • Robert D. Lovchik
  • Hans-Peter Beck
  • Walter Karlen
  • Emmanuel DelamarcheEmail author


Point-of-care (POC) diagnostics are critically needed for the detection of infectious diseases, particularly in remote settings where accurate and appropriate diagnosis can save lives. However, it is difficult to implement immunoassays, and specifically immunoassays relying on signal amplification using silver staining, into POC diagnostic devices. Effective immobilization of antibodies in such devices is another challenge. Here, we present strategies for immobilizing capture antibodies (cAbs) in capillary-driven microfluidic chips and implementing a gold-catalyzed silver staining reaction. We illustrate these strategies using a species/anti-species immunoassay and the capillary assembly of fluorescent microbeads functionalized with cAbs in “bead lanes”, which are engraved in microfluidic chips. The microfluidic chips are fabricated in silicon (Si) and sealed with a dry film resist. Rabbit IgG antibodies in samples are captured on the beads and bound by detection antibodies (dAbs) conjugated to gold nanoparticles. The gold nanoparticles catalyze the formation of a metallic film of silver, which attenuates fluorescence from the beads in an analyte-concentration dependent manner. The performance of these immunoassays was found comparable to that of assays performed in 96 well microtiter plates using “classical” enzyme-linked immunosorbent assay (ELISA). The proof-of-concept method developed here can detect 24.6 ng mL−1 of rabbit IgG antibodies in PBS within 20 min, in comparison to 17.1 ng mL−1 of the same antibodies using a ~140-min-long ELISA protocol. Furthermore, the concept presented here is flexible and necessitate volumes of samples and reagents in the range of just a few microliters.


Microfluidics Silver staining Immunoassays Microbeads 



Ngoc M. Pham is supported through the Engineering for Development doctoral scholarship by ETH Global and the Sawiris Foundation for Social Development. Walter Karlen is supported through the Swiss National Science Foundation professorship award 150640 “Intelligent point-of-care monitoring”. Yuksel Temiz, Robert D. Lovchik and Emmanuel Delamarche thank Elisa Hemmig and Onur Gökçe for discussions and Walter Riess and the IBM Research Frontiers Institute for their continuous support.


  1. C.A. Baker, C.T. Duong, A. Grimley, M.G. Roper, Bioanalysis 1, 967 (2009)CrossRefGoogle Scholar
  2. BIO Ventures for Global Health, The Diagnostics Innovation Map: Medical Diagnostics for the Unmet Needs of the Developing World (2010)Google Scholar
  3. C.D. Chin, V. Linder, S.K. Sia, Lab Chip 12, 2118 (2012)CrossRefGoogle Scholar
  4. M. A. Hayat (ed.), Immunogold-Silver Staining: Principles, Methods, and Applications (CRC Press, Taylor & Francis Group, 1995)Google Scholar
  5. C. Holgate, P. Jackson, P. Cowen, C. Bird, J. Histochem. Cytochem. 31(7), 938-944 (1983)Google Scholar
  6. H. Gai, Y. Li, E. S. Yeung, Top Curr Chem 304, 171-201 (2011)Google Scholar
  7. M. Hu, J. Yan, Y. He, H. Lu, L. Weng, S. Song, C. Fan, L. Wang, ACS Nano 4, 488 (2010)CrossRefGoogle Scholar
  8. B. Hu, J. Li, L. Mou, Y. Liu, J. Deng, W. Qian, J. Sun, R. Cha, X. Jiang, Lab Chip 17, 2225 (2017)CrossRefGoogle Scholar
  9. B. Kuswandi, J.H. Nuriman, W. Verboom, Anal. Chim. Acta 601, 141 (2007)CrossRefGoogle Scholar
  10. S.W. Lin, C.H. Chang, C.H. Lin, Genomic Med. Biomarkers, Heal. Sci. 3, 27 (2011)CrossRefGoogle Scholar
  11. R. Liu, Y. Zhang, S. Zhang, W. Qiu, Y. Gao, Appl. Spectrosc. Rev. 49, 121 (2014)CrossRefGoogle Scholar
  12. M. Mirasoli, M. Guardigli, E. Michelini, A. Roda, J. Pharm. Biomed. Anal. 87, 36 (2014)CrossRefGoogle Scholar
  13. P. Novo, D.M. França Prazeres, V. Chu, J.P. Conde, Lab Chip 11, 4063 (2011)CrossRefGoogle Scholar
  14. N. Patel, B.F. Rocks, M.P. Bailey, J. Clin. Pathol. 44, 334 (1991)CrossRefGoogle Scholar
  15. R.W. Peeling, D. Mabey, Clin. Microbiol. Infect. 16, 1062 (2010)CrossRefGoogle Scholar
  16. B.F. Rocks, N. Patel, M.P. Bailey, B. Royaj, S. County, E. Road, Ann. Clin. Biochem. 28, 155 (1991)CrossRefGoogle Scholar
  17. S. Sharma, J. Zapatero-Rodríguez, P. Estrela, R. O’Kennedy, Biosensors 5, 577 (2015)CrossRefGoogle Scholar
  18. I.C. Shekarchi, J.L. Sever, L. Nerurkar, D. Fuccillo, J. Clin. Microbiol. 21, 92 (1985)Google Scholar
  19. J. Sun, Y. Xianyu, X. Jiang, Chem. Soc. Rev. 43, 6239 (2014)CrossRefGoogle Scholar
  20. Y. Temiz, E. Delamarche, J. Micromech. Microeng. 24, 97001 (2014)CrossRefGoogle Scholar
  21. UNITAID, Malaria Diagnostics Technology and Market Landscape (2016), Accessed 14 May 2018
  22. UNITAID, HIV Rapid Diagnostics for Self-Testing, 3rd edn. (2017), Accessed 14 May 2018
  23. A. Wada, Y. Sakoda, T. Oyamada, H. Kida, J. Virol. Methods 178, 82 (2011)CrossRefGoogle Scholar
  24. H. Xu, X. Mao, Q. Zeng, W. Shengfu, A.-N. Kawde, G. Liu, Anal. Chem. 81, 669 (2009)CrossRefGoogle Scholar
  25. P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M.R. Tam, B.H. Weigl, Nature 442, 412 (2006)CrossRefGoogle Scholar
  26. F.Y. Yu, M.M. Vdovenko, J.J. Wang, I.Y. Sakharov, J. Agric. Food Chem. 59, 809 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ETH Zürich, Mobile Health Systems Lab, Institute for Robotics and Intelligent Systems, Department of Health Sciences and TechnologyZürichSwitzerland
  2. 2.Swiss Tropical and Public Health InstituteBaselSwitzerland
  3. 3.University of BaselBaselSwitzerland
  4. 4.Kantonsspital Aarau AG, Institut für Labormedizin, Medizinische GenetikAarauSwitzerland
  5. 5.IBM Research – ZurichRüschlikonSwitzerland

Personalised recommendations