Advertisement

Solid-state nanopore fabrication in LiCl by controlled dielectric breakdown

Article
  • 242 Downloads

Abstract

Nanopore fabrication via the controlled dielectric breakdown (CDB) method offers an opportunity to create solid-state nanopores directly in salt solution with sub-nanometer precision. Driven by trap assisted current tunneling, the method uses localized defects, or traps, in the dielectric material to isolate a breakdown point and fabricate a single pore in less than 10 minutes. Here we present an approach to controlled dielectric breakdown of SiNx in which the nanopore is fabricated in LiCl buffer instead of the traditional KCl buffer. Direct fabrication in LiCl buffer promotes a uniform, symmetric, cylindrical nanopore structure that is fully wet and can be used for experiments in situ. We have shown that fabrication in LiCl reduces the necessity for overnight pore stabilization and allows for the desired analyte to be added in significantly less time than it would take if fabrication was performed in KCl. Pores created by this approach can be used for biosensing applications, including the detection of double-stranded DNA. DNA translocation experiments were conducted in both LiCl and KCl buffer. Experiments conducted in LiCl buffer resulted in about a 2-fold increase in dsDNA transport duration when compared to experiments conducted in KCl buffer of the same concentration. An increase in transport duration of over 10-fold in comparison to KCl was observed when the concentration of the LiCl buffer was increased by a factor of 3.

Keywords

Controlled Dielectric Breakdown Lithium Chloride Trap Assisted Tunneling Slowed-down DNA translocation Solid-State Nanopore Nanotechnology DNA Detection 

Notes

Acknowledgements

This work was supported by Rowan University Startup fund.

We thank Maksudul Mowla, Undergraduate Research Assistant, and Liza Guner, Summer Research Intern, for their assistance in data acquisition and analysis.

Supplementary material

10544_2018_281_MOESM1_ESM.docx (251 kb)
ESM 1 (DOCX 250 kb)

References

  1. T.C. Autumn, B. Kyle, R.H. Adam, T.-C. Vincent, Solid-state nanopore localization by controlled breakdown of selectively thinned membranes. Nanotechnology 28(8), 085304 (2017)CrossRefGoogle Scholar
  2. E. Beamish, H. Kwok, V. Tabard-Cossa, M. Godin, Fine-tuning the Size and Minimizing the Noise of Solid-state Nanopores. J. Visual. Exp.: JoVE 80, 51081 (2013)Google Scholar
  3. S. Beckert, F. Stallmach, Water dynamics of LiCl solutions confined in nanopores. Diff. Fund. 18(13), 1–4 (2013)Google Scholar
  4. J. Bello, Y.-R. Kim, S.M. Kim, T.-J. Jeon, J. Shim, Lipid bilayer membrane technologies: A review on single-molecule studies of DNA sequencing by using membrane nanopores. Microchim. Acta 184(7), 1883–1897 (2017)CrossRefGoogle Scholar
  5. M. Bestetti, Contribution to the study of uniform corrosion by means of the maximum entropy production rate principle. Prot. Metal. Phys. Chem. Surf. 52(1), 176–181 (2016)CrossRefGoogle Scholar
  6. D. Branton, D.W. Deamer, A. Marziali, H. Bayley, S.A. Benner, T. Butler, M. Di Ventra, S. Garaj, A. Hibbs, X. Huang, S.B. Jovanovich, P.S. Krstic, S. Lindsay, X.S. Ling, C.H. Mastrangelo, A. Meller, J.S. Oliver, Y.V. Pershin, J.M. Ramsey, R. Riehn, G.V. Soni, V. Tabard-Cossa, M. Wanunu, M. Wiggin, J.A. Schloss, The potential and challenges of nanopore sequencing. Nat. Biotech. 26(10), 1146–1153 (2008)CrossRefGoogle Scholar
  7. K. Briggs, H. Kwok, V. Tabard-Cossa, Automated Fabrication of 2-nm Solid-State Nanopores for Nucleic Acid Analysis. Small 10(10), 2077–2086 (2014)CrossRefGoogle Scholar
  8. P.M. Das, R. Singal, DNA Methylation and Cancer. J. Clin. Oncol. 22(22), 4632–4642 (2004)CrossRefGoogle Scholar
  9. B. Eric, K. Harold, T.-C. Vincent, G. Michel, Precise control of the size and noise of solid-state nanopores using high electric fields. Nanotechnology 23(40), 405301 (2012)CrossRefGoogle Scholar
  10. D. Fologea, J. Uplinger, B. Thomas, D.S. McNabb, J. Li, Slowing DNA Translocation in a Solid-State Nanopore. Nano Lett. 5(9), 1734–1737 (2005)CrossRefGoogle Scholar
  11. G.S. Frankel, N. Sridhar, Understanding localized corrosion. Mater. Today 11(10), 38–44 (2008)CrossRefGoogle Scholar
  12. A.Y. Grosberg, Y. Rabin, DNA capture into a nanopore: interplay of diffusion and electrohydrodynamics. J. Chem. Phys. 133(16), 165102 (2010)CrossRefGoogle Scholar
  13. S. Habermehl, R.T. Apodaca, R.J. Kaplar, On dielectric breakdown in silicon-rich silicon nitride thin films. Appl. Phys. Lett. 94(1), 012905 (2009)CrossRefGoogle Scholar
  14. Y. He, M. Tsutsui, R.H. Scheicher, C. Fan, M. Taniguchi, T. Kawai, Mechanism of how salt-gradient-induced charges affect the translocation of DNA molecules through a nanopore. Biophys. J. 105(3), 776–782 (2013)CrossRefGoogle Scholar
  15. D.S. Jeong, C.S. Hwang, Tunneling-assisted Poole-Frenkel conduction mechanism in HfO2 thin films. J. Appl. Phys. 98(11), 113701 (2005)CrossRefGoogle Scholar
  16. J. Kasianowicz, E. Brandin, D. Branton, D.W. Deamer, Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. U. S. A. 93, 13770–13773 (1996)CrossRefGoogle Scholar
  17. J.J. Kasianowicz, J.W. Robertson, E.R. Chan, J.E. Reiner, V.M. Stanford, Nanoscopic porous sensors. Ann. Rev. Anal. Chem. (Palo Alto, Calif.) 1, 737–766 (2008)CrossRefGoogle Scholar
  18. S.W. Kowalczyk, A.R. Hall, C. Dekker, Detection of Local Protein Structures along DNA Using Solid-State Nanopores. Nano Lett. 10(1), 324–328 (2010)CrossRefGoogle Scholar
  19. S.W. Kowalczyk, Y.G. Alexander, R. Yitzhak, D. Cees, Modeling the conductance and DNA blockade of solid-state nanopores. Nanotechnology 22(31), 315101 (2011)CrossRefGoogle Scholar
  20. S.W. Kowalczyk, D.B. Wells, A. Aksimentiev, C. Dekker, Slowing down DNA Translocation through a Nanopore in Lithium Chloride. Nano Lett. 12(2), 1038–1044 (2012)CrossRefGoogle Scholar
  21. O.V. Krasilnikov, R.Z. Sabirov, V.I. Ternovsky, P.G. Merzliak, B.A. Tashmukhamedov, The structure of Staphylococcus aureus alpha-toxin-induced ionic channel. Gen. Physiol. Biophys. 7(5), 467–473 (1988)Google Scholar
  22. O.V. Krasilnikov, R.Z. Sabirov, V.I. Ternovsky, P.G. Merzliak, J.N. Muratkhodjaev, A simple method for the determination of the pore radius of ion channels in planar lipid bilayer membranes. FEMS Microbiol. Lett. 105(1–3), 93–100 (1992)CrossRefGoogle Scholar
  23. P. Krishnakumar, B. Gyarfas, W. Song, S. Sen, P. Zhang, P. Krstić, S. Lindsay, Slowing DNA Translocation through a Nanopore Using a Functionalized Electrode. ACS Nano 7(11), 10319–10326 (2013)CrossRefGoogle Scholar
  24. H. Kwok, K. Briggs, V. Tabard-Cossa, Nanopore Fabrication by Controlled Dielectric Breakdown. PLoS One 9(3), e92880 (2014)CrossRefGoogle Scholar
  25. B. Kyle, C. Martin, K. Harold, L. Timothea, C. Sanmeet, B. José, W. Matthew, T.-C. Vincent, Kinetics of nanopore fabrication during controlled breakdown of dielectric membranes in solution. Nanotechnology 26(8), 084004 (2015)CrossRefGoogle Scholar
  26. Z. Liang, Z. Tang, J. Li, R. Hu, D. Yu, Q. Zhao, Interaction prolonged DNA translocation through solid-state nanopores. Nano 7(24), 10752–10759 (2015)Google Scholar
  27. D.-H. Lin, C.-Y. Lin, S. Tseng, J.-P. Hsu, Influence of electroosmotic flow on the ionic current rectification in a pH-regulated, conical nanopore. Nano 7(33), 14023–14031 (2015)Google Scholar
  28. S. Lombardo, J.H. Stathis, B.P. Linder, K.L. Pey, F. Palumbo, C.H. Tung, Dielectric breakdown mechanisms in gate oxides. J. Appl. Phys. 98(12), 121301 (2005)CrossRefGoogle Scholar
  29. E.C. Lopes, E. Valls, M.E. Figueroa, A. Mazur, F.G. Meng, G. Chiosis, P.W. Laird, N. Schreiber-Agus, J.M. Greally, E. Prokhortchouk, A. Melnick, Kaiso contributes to DNA methylation-dependent silencing of tumor suppressor genes in colon cancer cell lines. Cancer Res. 68(18), 7258–7263 (2008)CrossRefGoogle Scholar
  30. M. Mao, J.D. Sherwood, S. Ghosal, Electro-osmotic flow through a nanopore. J. Fluid Mech. 749, 167–183 (2014)MathSciNetCrossRefGoogle Scholar
  31. M.M. Marshall, J.A. Ruzicka, E.W. Taylor, A.R. Hall, Detecting DNA Depurination with Solid-State Nanopores. PLoS One 9(7), e101632 (2014)CrossRefGoogle Scholar
  32. D.V. Melnikov, Z.K. Hulings, M.E. Gracheva, Electro-osmotic flow through nanopores in thin and ultrathin membranes. Phys. Rev. E 95(6), 063105 (2017)CrossRefGoogle Scholar
  33. F. Nicoli, D. Verschueren, M. Klein, C. Dekker, M.P. Jonsson, DNA translocations through solid-state plasmonic nanopores. Nano Lett. 14(12), 6917–6925 (2014)CrossRefGoogle Scholar
  34. C. Plesa, D. Verschueren, S. Pud, J. van der Torre, J.W. Ruitenberg, M.J. Witteveen, M.P. Jonsson, A.Y. Grosberg, Y. Rabin, C. Dekker, Direct observation of DNA knots using a solid-state nanopore. Nat. Nano. 11(12), 1093–1097 (2016)CrossRefGoogle Scholar
  35. S. Pud, D. Verschueren, N. Vukovic, C. Plesa, M.P. Jonsson, C. Dekker, Self-Aligned Plasmonic Nanopores by Optically Controlled Dielectric Breakdown. Nano Lett. 15(10), 7112–7117 (2015)CrossRefGoogle Scholar
  36. J.E. Reiner, J.J. Kasianowicz, B.J. Nablo, J.W.F. Robertson, Theory for polymer analysis using nanopore-based single-molecule mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 107(27), 12080–12085 (2010)CrossRefGoogle Scholar
  37. K.D. Robertson, DNA methylation and human disease. Nat. Rev. Genet. 6(8), 597–610 (2005)CrossRefGoogle Scholar
  38. M.R. Rountree, K.E. Bachman, J.G. Herman, S.B. Baylin, DNA methylation, chromatin inheritance, and cancer. Oncogene 20(24), 3156–3165 (2001)CrossRefGoogle Scholar
  39. T.V.S.L. Satyavani, B. Ramya Kiran, V. Rajesh Kumar, A. Srinivas Kumar, S.V. Naidu, Effect of particle size on dc conductivity, activation energy and diffusion coefficient of lithium iron phosphate in Li-ion cells. Eng. Sci. Technol. , Int. J. 19(1), 40–44 (2016)CrossRefGoogle Scholar
  40. B. Schiedt, K. Healy, A.P. Morrison, R. Neumann, Z. Siwy, Transport of ions and biomolecules through single asymmetric nanopores in polymer films. Nucl. Instrum. Methods Phys. Res., Sect. B 236(1), 109–116 (2005)CrossRefGoogle Scholar
  41. J. Shim, G.I. Humphreys, B.M. Venkatesan, J.M. Munz, X. Zou, C. Sathe, K. Schulten, F. Kosari, A.M. Nardulli, G. Vasmatzis, R. Bashir, Detection and Quantification of Methylation in DNA using Solid-State Nanopores. Sci. Rep. 3, 1389 (2013)CrossRefGoogle Scholar
  42. J. Shim, Y. Kim, G.I. Humphreys, A.M. Nardulli, F. Kosari, G. Vasmatzis, W.R. Taylor, D.A. Ahlquist, S. Myong, R. Bashir, Nanopore-Based Assay for Detection of Methylation in Double-Stranded DNA Fragments. ACS Nano 9(1), 290–300 (2015)CrossRefGoogle Scholar
  43. J. Shim, S. Banerjee, H. Qiu, K.K.H. Smithe, D. Estrada, J. Bello, E. Pop, K. Schulten, R. Bashir, Detection of methylation on dsDNA using nanopores in a MoS2 membrane. Nano (2017)Google Scholar
  44. K.P. Singh, M. Kumar, Effect of surface charge density and electro-osmotic flow on ionic current in a bipolar nanopore fluidic diode. J. Appl. Phys. 110(8), 084322 (2011)CrossRefGoogle Scholar
  45. Z.S. Siwy, Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry. Adv. Funct. Mater. 16(6), 735–746 (2006)CrossRefGoogle Scholar
  46. R.M.M. Smeets, U.F. Keyser, D. Krapf, M.-Y. Wu, N.H. Dekker, C. Dekker, Salt Dependence of Ion Transport and DNA Translocation through Solid-State Nanopores. Nano Lett. 6(1), 89–95 (2006)CrossRefGoogle Scholar
  47. E. Stellwagen, Q. Dong, N.C. Stellwagen, Monovalent cations affect the free solution mobility of DNA by perturbing the hydrogen-bonded structure of water. Biopolymers 78(2), 62–68 (2005)CrossRefGoogle Scholar
  48. A.J. Storm, C. Storm, J. Chen, H. Zandbergen, J.-F. Joanny, C. Dekker, Fast DNA Translocation through a Solid-State Nanopore. Nano Lett. 5(7), 1193–1197 (2005)CrossRefGoogle Scholar
  49. G. Strathdee, R. Brown, Aberrant DNA methylation in cancer: potential clinical interventions. Expert Rev. Mol. Med. 4(4), 1–17 (2002)CrossRefGoogle Scholar
  50. B.M. Venkatesan, R. Bashir, Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol. 6(10), 615–624 (2011)CrossRefGoogle Scholar
  51. I. Vodyanoy, S.M. Bezrukov, Sizing of an ion pore by access resistance measurements. Biophys. J. 62(1), 10–11 (1992)CrossRefGoogle Scholar
  52. Y. Wang, C. Ying, W. Zhou, L. de Vreede, Z. Liu, J. Tian, Fabrication of multiple nanopores in a SiNx membrane via controlled breakdown. Sci. Rep. 8(1), 1234 (2018)CrossRefGoogle Scholar
  53. M. Wanunu, W. Morrison, Y. Rabin, A.Y. Grosberg, A. Meller, Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat. Nano. 5(2), 160–165 (2010)CrossRefGoogle Scholar
  54. M. Waugh, A. Carlsen, D. Sean, G.W. Slater, K. Briggs, H. Kwok, V. Tabard-Cossa, Interfacing solid-state nanopores with gel media to slow DNA translocations. Electrophoresis 36(15), 1759–1767 (2015)CrossRefGoogle Scholar
  55. Weast, R. C., CRC Handbook of Chemistry and Physics, 70th Edition. Taylor & Francis: 1989Google Scholar
  56. R.W. Wilson, D.C. Rau, V.A. Bloomfield, Comparison of polyelectrolyte theories of the binding of cations to DNA. Biophys. J. 30(2), 317–325 (1980)CrossRefGoogle Scholar
  57. Wolf, A. V., Aqueous solutions and body fluids: their concentrative properties and conversion tables. Hoeber Medical Division, Harper & Row: 1966Google Scholar
  58. Wu, J.; Register, L. F.; Rosenbaum, E. In Trap-assisted tunneling current through ultra-thin oxide, 1999 I.E. International Reliability Physics Symposium Proceedings. 37th Annual (Cat. No.99CH36296), 1999; pp 389–395Google Scholar
  59. I. Yanagi, R. Akahori, T. Hatano, K.-I. Takeda, Fabricating nanopores with diameters of sub-1 nm to 3 nm using multilevel pulse-voltage injection. Sci. Rep. 4, 5000 (2014)CrossRefGoogle Scholar
  60. E.C. Yusko, J.M. Johnson, S. Majd, P. Prangkio, R.C. Rollings, J. Li, J. Yang, M. Mayer, Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat. Nano. 6(4), 253–260 (2011)CrossRefGoogle Scholar
  61. O.K. Zahid, B.S. Zhao, C. He, A.R. Hall, Quantifying mammalian genomic DNA hydroxymethylcytosine content using solid-state nanopores. Sci. Rep. 6, 29565 (2016)CrossRefGoogle Scholar
  62. J. Zhi, Z. Yi-Qi, L. Cong, W. Ping, L. Yu-Qi, Influence of trap-assisted tunneling on trap-assisted tunneling current in double gate tunnel field-effect transistor. Chin. Phys. B. 25(2), 027701 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biomedical Engineering, Henry M. Rowan College of EngineeringRowan UniversityGlassboroUSA

Personalised recommendations