Advertisement

Development of 3D printed fibrillar collagen scaffold for tissue engineering

  • Aden Díaz Nocera
  • Romina Comín
  • Nancy Alicia Salvatierra
  • Mariana Paula Cid
Article

Abstract

Collagen is widely used in tissue engineering because it can be extracted in large quantities, and has excellent biocompatibility, good biodegradability, and weak antigenicity. In the present study, we isolated printable collagen from bovine Achilles tendon and examined the purity of the isolated collagen using sodium dodecyl sulfate polyacrylamide gel electrophoresis. The bands obtained corresponded to α1, α2 and β chains with little contamination from other small proteins. Furthermore, rheological measurements of collagen dispersions (60 mg per ml of PBS) at pH 7 revealed values of viscosity of 35.62 ± 1.42 Pa s at shear rate of 10 s − 1 and a shear thinning behavior. Collagen gels and solutions can be used for building scaffolds by three-dimensional (3D) printing. After designing and fabricating a low-cost 3D printer we assayed the collagen printing and obtaining 3D printed scaffolds of collagen at pH 7. The porosity of the scaffold was 90.22% ± 0.88% and the swelling ratio was 1437% ± 146%. The microstructure of the scaffolds was studied using scanning electron microscopy, and a porous mesh of fibrillar collagen was observed. In addition, the 3D printed collagen scaffold was not cytotoxic with cell viability higher than 70% using Vero and NIH 3 T3 cells. In vitro evaluation using both cells lines demonstrated that the collagen scaffolds had the ability to support cell attachment and proliferation. Also a fibrillar collagen mesh was observed after two weeks of culture at 37 °C. Overall, these results are promising since they show the capability of the presented protocol to obtain printable fibrillar collagen at pH 7 and the potential of the printing technique for building low-cost biocompatible 3D plotted structures which maintained the fibrillar collagen structure after incubation in culture media without using additional strategies as crosslinking.

Keywords

Collagen isolation Three-dimensional printer Fibrillar collagen Three-dimensional printed scaffold Cytocompability Tissue engineering 

Notes

Acknowledgments

This research was supported by grants from SECyT-Universidad Nacional de Cordoba (Argentina) (PIP 308-201301-00273 CB). Aden Díaz Nocera is student of Facultad de Ciencias Médicas (UNC) and developed the bioprinter. Nancy A. Salvatierra, Mariana P. Cid and Romina Comín are members of CONICET. We thank Dr. Paul Hobson, native speaker, for revision of the manuscript.

Compliance with ethical standards

Conflicts OF interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

References

  1. S. Ahn, Y.G. Koh, G.H. Kim, J. Micromech. Microeng. 20, 065015 (2010)CrossRefGoogle Scholar
  2. B. An, Y.S. Lin, B. Brodsky, Adv. Drug Deliv. Rev. 97, 69 (2016)CrossRefGoogle Scholar
  3. E.E. Antoine, P.P. Vlachos, M.N. Rylander, PLoS One 10, e0122500 (2015)CrossRefGoogle Scholar
  4. S. Browne, D.I. Zeugolis, A. Pandit, Tissue Eng. Part A. 19, 1491 (2013)CrossRefGoogle Scholar
  5. E.C. Chan, S.M. Kuo, A.M. Kong, W.A. Morrison, G.J. Dusting, G.M. Mitchell, S.Y. Lim, G.S. Liu, PLoS One 11, e0149799 (2016)CrossRefGoogle Scholar
  6. E. Cheng, H. Yu, A. Ahmadi, K.C. Cheung, Biofabrication 8, 015008 (2016)CrossRefGoogle Scholar
  7. V.L. Cross, Y. Zheng, N.W. Choi, S.S. Verbridge, B.A. Sutermaster, L.J. Bonassar, C. Fischbach, A.D. Stroock, Biomaterials 31, 8596 (2010)CrossRefGoogle Scholar
  8. Z. Deyl, I. Miksik, J. Chromatogr. B 739, 3 (2000)CrossRefGoogle Scholar
  9. A. Díaz Nocera, N.A. Salvatierra, M.P. Cid, IFMBE Proceed. 49, 136 (2015)CrossRefGoogle Scholar
  10. A. Erikson, H.N. Andersen, S.N. Naess, P. Sikorski, C.L. Davies, Biopolymers 89, 135 (2008)CrossRefGoogle Scholar
  11. P. Fratzl, Collagen, Structure and Mechanics, 1st edn. (Springer, New York, 2008), pp. 1–71; 475–496Google Scholar
  12. C. Gandhimathi, J.R. Venugopal, V. Bhaarathy, S. Ramakrishna, S.D. Kumar, Int. J. Nanomedicine 9, 4709 (2014)Google Scholar
  13. S.C. Genari, M.A.H. Dolder, M.L. Wada, J. Submicrosc. Cytol. Pathol. 28, 565 (1996)Google Scholar
  14. Z. Ghanavati, N. Neisi, V. Bayati, M. Makvandi, Anat. Cell. Biol. 48, 251 (2015)CrossRefGoogle Scholar
  15. S.A. Ghodbane, M.G. Dunn, J. Biomed. Mater. Res. A 104, 2685 (2016)CrossRefGoogle Scholar
  16. J. Glowacki, S. Mizuno, Biopolymers 89, 338 (2008)CrossRefGoogle Scholar
  17. B.K. Gu, D.J. Choi, S.J. Park, M.S. Kim, C.M. Kang, C.H. Kim, Biomater. Res. 20, 12 (2016)CrossRefGoogle Scholar
  18. J.A. Inzana, D. Olvera, S.M. Fuller, J.P. Kelly, O.A. Graeve, E.M. Schwarz, S.L. Kates, H.A. Awad, Biomaterials 35, 4026 (2014)CrossRefGoogle Scholar
  19. G.H. Kim, S.H. Ahn, H. Yoon, Y.Y. Kim, W. Chun, J. Mater. Chem. 19, 8817 (2009)CrossRefGoogle Scholar
  20. Y. Kim, H. Nowzari, S.K. Rich, Clin. Impl. Dent. Relat. Res. 15, 645 (2013)Google Scholar
  21. C.R. Kliment, J.M. Englert, L.P. Crum, T.D. Oury, Int. J. Clin. Exp. Pathol. 4, 349 (2011)Google Scholar
  22. R. Komsa-PenKova, R. Spirova, B. Bechev, J. Bicchem. Biophys. Methods 32, 33 (1996)CrossRefGoogle Scholar
  23. C.H. Lee, A. Singla, Y. Lee, Int. J. Pharm. 221, 1 (2001)CrossRefGoogle Scholar
  24. V. Lee, G. Singh, J.P. Trasatti, C. Bjornsson, X. Xu, T.N. Tran, S.S. Yoo, G. Dai, P. Karande, Tissue Eng. Part. C Methods 20, 473 (2014)CrossRefGoogle Scholar
  25. A. Lode, M. Meyer, S. Brüggemeier, B. Paul, H. Baltzer, M. Schröpfer, C. Winkelmann, F. Sonntag, M. Gelinsky, Biofabrication 8, 015015 (2016)CrossRefGoogle Scholar
  26. C.B. Lombello, S.M. Malmonge, M.L.F. Wada, Cytobios 101, 115 (2000)Google Scholar
  27. L. Ma, C. Gao, Z. Mao, J. Zhou, J. Shen, J. Biomed. Mater. Res. A 71, 334 (2004)CrossRefGoogle Scholar
  28. M.G. McCoy, B.R. Seo, S. Choi, C. Fischbach, Acta Biomater. 44, 200 (2016)CrossRefGoogle Scholar
  29. V. Mironov, T. Boland, T. Trusk, G. Forgacs, , R.R. Markwald , TRENDS Biotech. 21, 157 (2003)CrossRefGoogle Scholar
  30. N. Moiemen, J. Yarrow, E. Hodgson, J. Constantinides, E. Chipp, H. Oakley, E. Shale, M. Freeth, Plast. Reconstr. Surg. 127, 1149 (2011)CrossRefGoogle Scholar
  31. R. Parenteau-Bareil, R. Gauvin, F. Berthod, Materials 3, 1863 (2010)CrossRefGoogle Scholar
  32. H. Park, X. Guo, J.S. Temenoff, Y. Tabata, A.I. Caplan, F.K. Kasper, A.G. Mikos, Biomacromolecules 10, 541 (2009)CrossRefGoogle Scholar
  33. J. Qian, Y. Okada, T. Ogura, K. Tanaka, S. Hattori, S. Ito, J. Satoh, T. Takita, K. Yasukawa, J. Food Sci. 81, 27 (2016)CrossRefGoogle Scholar
  34. N. Rajan, Nat. Protoc. 1, 2753 (2006)CrossRefGoogle Scholar
  35. S. Ricard-Blum, Cold Spring Harb. Perspect. Biol. 3, a004978 (2011)CrossRefGoogle Scholar
  36. A.M. Rosales, K.S. Anseth, Nat. Rev. Mat. 1, 15012 (2016)CrossRefGoogle Scholar
  37. J. Rouwkema, S. Gibbs, M. Lutolf, I. Martin, G. Vunjak-Novakovic, J. Malda, J. Tissue Eng. Reg. Med. 5, 164 (2011)CrossRefGoogle Scholar
  38. G.S. Simões, E.T. Silveira, S.R. de Oliveira, E. Poleze, J.R. Allison, E.I. Ida, M. Shimokomaki, Meat Sci. 96, 1460 (2014)CrossRefGoogle Scholar
  39. K. Wolf, S. Alexander, V. Schacht, L.M. Coussens, U.H. Von Andrian, J. Van Rheenen, E. Deryugina, P. Friedl, Sem. Cell. Dev. Biol. 20, 931 (2009)CrossRefGoogle Scholar
  40. T. Xu, K.W. Binder, M.Z. Albanna, D. Dice, W. Zhao, J.J. Yoo, A. Atala, Biofabrication 5, 015001 (2013)CrossRefGoogle Scholar
  41. X. Yang, J.D. Shah, H. Wang, Tissue Eng. A 15, 945 (2009)CrossRefGoogle Scholar
  42. M. Yeo, J.S. Lee, W. Chun, G.H. Kim, Biomacromolecules 17, 1365 (2016)CrossRefGoogle Scholar
  43. D.I. Zeugolis, R.G. Paul, G. Attenburrow, J. Biomed. Mater. Res. A 15, 892 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Aden Díaz Nocera
    • 1
  • Romina Comín
    • 1
    • 2
  • Nancy Alicia Salvatierra
    • 1
    • 2
  • Mariana Paula Cid
    • 1
    • 2
  1. 1.Departamento de Química, Facultad de Ciencias Exactas, Físicas y NaturalesUniversidad Nacional de CórdobaCórdobaArgentina
  2. 2.Instituto de Investigaciones Biológicas y Tecnológicas(IIByT-CONICET-UNC)CórdobaArgentina

Personalised recommendations